Course of
 "Automatic Control Systems"

 2022/23
Example of controller design

Prof. Francesco Montefusco
Department of Economics, Law, Cybersecurity, and Sports Sciences
Università degli Studi di Napoli Parthenope
francesco.montefusco@uniparthenope.it
Team code: uxbsz19

Example of controller design

A Let us consider a closed loop system in the form

where

$$
G(s)=\frac{30}{(s+10)(s+3)}
$$

Requirements

Let us consider the following requirements:

1. $e_{\infty}=0$ for a reference signal $r(t)=1 \cdot 1(t)$
2. Attenuation $\geq 95 \%$ for multi-frequency noise in the range $[100+\infty] \mathrm{rad} / \mathrm{s}$
3. Overshoot $s \leq 20 \%$
4. Settling time $t_{s 1 \%} \leq 0.5 \mathrm{~s}$

Steady-state spec. for polynomial reference

1. $e_{\infty}=0$ for a reference signal $r(t)=1 \cdot 1(t)$

A Steady-state requirement for polynomial reference signal.
A To assure a null steady state error for a polynomial signal of order 0 it is necessary that $F(s)$ is of type 1 , that is $F(s)$ has a pole in the origin.

A Taking into account that the plant transfer function $G(s)$ doesn't contain poles in the origin, the steady-state part of the controller is

$$
K^{\prime}(s)=\frac{k_{0}}{s}
$$

where k_{0} is a free parameter

Steady-state spec. for multi-frequency noise

2. Attenuation $\geq 95 \%$ for multi-frequency noise in the range $[100+\infty] \mathrm{rad} / \mathrm{s}$

A Steady-state requirement for multi-frequency noise
A It implies that

$$
|T(s)|=\left|\frac{F(s)}{1+F(s)}\right| \leq 0.05 \rightarrow|F(s)| \leq 0.05 \quad \rightarrow \quad|F(s)|_{d b} \leq-26_{d b}
$$

Transient spec. on the overshoot

3. Overshoot $s \leq 20 \%$

A Transient requirement on the overshoot

A Taking into account that $S=e^{\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}}$, we have that

$$
s \leq 20 \% \quad \rightarrow \quad \zeta \geq 0.45 \rightarrow \varphi_{m} \cong 100 \zeta \geq 45^{\circ}
$$

A Hence the complementary sensitivity function can be approximated by a second order system in the form

$$
T_{a}(s)=\frac{1}{1+\frac{2 \zeta}{\omega_{n}} s+\frac{s^{2}}{\omega_{n}^{2}}}
$$

where $\zeta=0.45$ and ω_{n} depends on the settling time requirement

Example: transient spec. on the settling time

4. Settling time $\boldsymbol{t}_{\boldsymbol{s} \mathbf{1} \%} \leq \mathbf{0} .5 \boldsymbol{s}$

A Transient requirement on the settling time

A Taking into account that the settling time at 1% for a second order system is defined as $t_{s 1 \%} \cong \frac{4.6}{\zeta \omega_{n}}$, we have that

$$
t_{s 1 \%} \leq 0.5 \rightarrow \frac{1}{\omega_{n}} \leq \frac{0.5 \zeta}{4.6} \rightarrow \quad \omega_{c}=\omega_{n} \geq \frac{4.6}{0.5 \cdot 0.45}=20
$$

A The transfer function $F(\boldsymbol{s})$ should have a crossing frequency $\boldsymbol{\omega}_{c}>20$ and a phase margin $\varphi_{m}>45^{\circ}$.

Controller design

A Design the controller $K(s)$ so that the open loop function $F(s)=K(s) G(s)$ satisfies the previous requirements

A The controller will be in the form

$$
K(s)=K^{\prime}(s) \cdot K^{\prime \prime}(s)
$$

where
$\not K^{\prime}(s)$ have been designed according to the steady-state requirements concerning polynomial reference and/or disturbs

$$
K^{\prime}(s)=\frac{1}{s}
$$

$\not K^{\prime \prime}(s)$ have to be designed according to the steady-state multi-frequency requirements and the transient requirements

Step2: Controller design

A In order to design $K^{\prime \prime}(s)$, let us consider the Bode diagrams of the function

$$
F^{\prime}(s)=K^{\prime}(s) \cdot G(s)=\frac{30}{s(s+10)(s+3)}=\frac{1}{s\left(1+\frac{s}{10}\right)\left(1+\frac{s}{3}\right)}
$$

assuming $k_{0}=1$.
The transfer function is characterized by

* A unitary constant term
\star A pole in the origin
\star Two real poles in $p_{1}=-10\left(\frac{1}{\tau_{1}}=10\right)$ and $p_{2}=-3\left(\frac{1}{\tau_{2}}=3\right)$

Controller design

Bode Diagram

A $F^{\prime}(s)$ magnitude amplification of $50_{d b}$ to have a crossing frequency $\omega_{c}=20 \mathrm{rad} / \mathrm{s}$
A $F^{\prime}(s)$ phase lead of 100° to have $\varphi_{m}=45^{\circ}$

Controller design

A The magnitude amplification can be easily achieved with a gain $k_{0}=50_{d b}$, however it doesn't affect the phase

A To achieve both a magnitude amplification and a phase lead we can add a control structure composed by 1 pole and 1 zero in the form

$$
\begin{aligned}
& K^{\prime \prime}(s)=\frac{\left(1+s \tau^{\prime}\right)}{(1+s \tau)} \\
& \text { with } \tau^{\prime}>\tau \text {. }
\end{aligned}
$$

Controller design

A In our case, we require 100° phase lead hence an additional zero is needed. In particular we will add:

* Two zeros in $z_{1}=-2$ and $z_{2}=\mathbf{- 1 0}$
- 150° phase lead in $\omega=20 \mathrm{rad} / \mathrm{s} \quad\left(\varphi_{m} \cong 100\right)$
- $26_{d b}$ magnitude amplification in $\omega=20 \mathrm{rad} / \mathrm{s}$
- $54_{d b}$ magnitude amplification in $\omega=100 \mathrm{rad} / \mathrm{s}$
- Gain $\boldsymbol{k}_{\mathbf{0}}=\mathbf{2 0}$
- $26_{d b}$ magnitude amplification $\left(\omega_{c} \cong 20 \mathrm{rad} / \mathrm{s}\right.$ and $\left.|F(j 100)|_{d b} \cong-10\right)$
$*$ Pole in $p=\mathbf{- 2 0}$
- 45° phase lag in $\omega=20 \mathrm{rad} / \mathrm{s} \quad\left(\varphi_{m} \cong 55^{\circ}\right)$
- $3_{d b}$ magnitude attenuation in $\omega=20 \mathrm{rad} / \mathrm{s} \quad\left(\omega_{c} \cong 20 \mathrm{rad} / \mathrm{s}\right)$
- $14_{d b}$ magnitude attenuation in $\omega=100 \mathrm{rad} / \mathrm{s}\left(|F(j 100)|_{d b} \cong-24\right)$

Controller design

A The controller is in the form

$$
K(s)=K^{\prime}(s) K^{\prime \prime}(s)=\frac{20\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}{s\left(1+\frac{s}{20}\right)}
$$

A The pole in $\mathrm{p}=-20$ was necessary also for the physical feasibility of the controller that can not be in-proper.

A In the following slide the Bode diagrams of

$$
F(s)=K^{\prime}(s) \cdot K^{\prime \prime}(s) \cdot G(s)
$$

are reported.

Controller design

Bode Diagram
$\mathrm{Gm}=\operatorname{lnf} \mathrm{dB}(\mathrm{at} \operatorname{lnf} \mathrm{rad} / \mathrm{s}), \mathrm{Pm}=46.7 \mathrm{deg}($ at $20.7 \mathrm{rad} / \mathrm{s})$

Validation: step response

