

L. Magistrale in IA (ML&BD)

Scientific Computing (part 2 – 6 credits)

prof. Mariarosaria Rizzardi

Centro Direzionale di Napoli – Bldg. C4

<u>room</u>: n. 423 – North Side, 4th floor

phone: 081 547 6545

email: mariarosaria.rizzardi@uniparthenope.it

Contents

- Conformal Mappings.
- Law on local arc transformation (geometric interpretation of derivative of a complex function).
- Theorem: fholomorphic at z_0 and $f'(z_0) \neq 0 \mapsto w = f(z)$ conformal.

Complex Functions and plane transformations

$$f: z \in A \longrightarrow w = f(z) = u(x, y) + iv(x, y) \in B$$

$$z = x + iy$$
 $w = f(z)$
 $T[v = u(x, y)]$
 $v = v(x, y)$

complex function

transformation T between (x,y)-plane and (u,v)-plane

T locally invertible

$$\det[J(x_0, y_0)] = \left| \frac{\partial(u, v)}{\partial(x, y)} (x_0, y_0) \right| \neq 0$$

$$f'ig(z_0ig)$$
 =

A and B simply connected domains

T globally invertible in A

Example: quadratic function

$$w = f(z) = z^{2}$$

$$z = x + iy$$

$$w = u + iv$$

$$T\begin{vmatrix} u = x^2 - y^2 \\ v = 2xy \end{vmatrix}$$

z = x + iy z = x + iv locally invertible in the whole complex plane except at origin

$$\left|J(x,y)\right| = \left|\frac{\partial(u,v)}{\partial(x,y)}(x,y)\right| = \begin{vmatrix} 2x & -2y \\ 2y & 2x \end{vmatrix} = 4\left(x^2 + y^2\right) \neq 0 \iff (x,y) \neq (0,0)$$

Example: complex conjugate function

$$w = f(z) = \overline{z}$$
$$z = x + iv$$

w = u + iv

$$z = x + iy w = u + iv$$

$$T \begin{cases} u = x \\ v = -y \end{cases}$$

globally invertible in the whole complex plane

Conformal map

A conformal map w=f(z) preserves the magnitude of local angles and their orientation.

Anticonformal map

An anticonformal map w=f(z) preserves the magnitude of local angles but it inverts their orientation.

Transformation of local arcs

Let γ be a local arc of a curve:

- contained in a neighbourhood of z_0 ,
- passing through the point z₀
- regular (i.e. equipped with a continuous tangent τ at each point):

$$\gamma : z=z(t)=x(t)+iy(t), t \in [a,b]$$

$$z_0=z(t_0)$$

The parametric equation of the tangent line τ to γ at z_0 is:

$$\tau: z=z(\rho)=z_0+\rho z'(t_0), \quad \rho\in]-\infty, +\infty[.$$

By definition, the tangential angle θ of the arc γ at z_0 is the angle between the tangent τ and the x-axis:

$$\theta = \arg z'(t_0)$$

 $w(t) \ge f(z(t)) = \overline{z(t)}$

Exercises

Change the previous symbolic code into numerical code, by approximating derivatives by means of difference quotients.

Compute the angle between the line, of eq.: $z_1=t+it$, and the parabola, of eq.: $z_2=t+it^2$, at their intersection point P(1,1), and the angle between their image curves by means of the following mappings:

1. w=f(z)=2z-1 $w=f(z)=\overline{z}$

Law on transformation of local arcs (1/5)

$$\gamma: z = z(t), \quad t \in [a,b]$$

$$z_0 = z(t_0) \quad a < t_0 < b$$

The tangent
$$\tau$$
 to γ at z_0 has equation

 $\tau: z = z(\rho) = z_0 + \rho \cdot z'(t_0), \quad \rho \in \mathbb{R}$ and the angle θ of γ at z_0 is given by

$$\theta = \arg z'(t_0)$$

The tangent τ^* to γ^* at w_0 has equation $\tau^* : w = w(\rho) = w_0 + \rho \cdot w'(t_0), \ \rho \in \mathbb{R}$

and the angle θ^* of γ^* at w_0 is given by $\theta^* = \arg w'(t_0)$

 $\gamma^*: w = w(t) = f(z(t)), \quad t \in [a,b]$

 $w_0 = f(z_0) = f(z(t_0))$

Law on local arc transformation (2/5)

$$\gamma: z = z(t), \quad t \in [a,b]$$
 $z_0 = z(t_0), \quad a < t_0 < b$
 $w_0 = f(z(t)), \quad t \in [a,b]$
 $w_0 = f(z(t_0)) = f(z(t_0))$

If γ is a regular curve and f(z) is holomorphic, then $\gamma*$ is regular.

The tangent τ^* to γ^* at w_0 has equation $\tau^*: w = w(\rho) = w_0 + \rho \cdot w'(t_0), \ \rho \in \mathbb{R}$ and $\theta^* = \arg w'(t_0)$

Law on local arc transformation (3/5)

In the z-plane, around z_0 :

$$\gamma$$
 = smooth arc at z_0

$$\gamma: z=z(t),$$

$$\tau: z = z(\rho) = z_0 + \rho z'(t_0), \quad \rho \in \mathbb{R}$$

$$\tau$$
 = tangent at z_0

In the w-plane, around w_0 :

$$\gamma^*$$
 = image arc

$$\gamma^*: w = w(t) = f(z(t)), \qquad t \in [a,b]$$

ound
$$z_0$$
:

In the w -plane, around w_0 :

 $\gamma^* = \text{image arc}$
 $\gamma^* : w = w(t) = f(z(t)), \qquad t \in [a, b]$
 $\tau^* : w = w(\rho) = w_0 + \rho w'(t_0), \quad \rho \in \mathbb{R}$
 $\tau^* = \text{tangent at } w_0$

$$w'(t_0) = f'(z_0) \cdot z'(t_0), \quad f'(z_0) \neq 0$$

Law on local arc transformation (4/5)

In the z-plane, let z_1 and z_2 be two points on γ very close to z_0 so that the chord between them can be considered equal to a tangent segment on τ.

$$w'(t_0) = f'(z_0) \cdot z'(t_0), \quad f'(z_0) \neq 0$$

The lated to the curve at that point related to the map at that point

$$z_2 - z_1 = z(\rho_2) - z(\rho_1) = [z_0 + \rho_2 z'(t_0)] - [z_0 + \rho_1 z'(t_0)] = [\rho_2 - \rho_1] z'(t_0)$$

$$w_2 - w_1 = w(\rho_2) - w(\rho_1) = [\rho_2 - \rho_1] w'(t_0) = [\rho_2 - \rho_1] z'(t_0) f'(t_0) = [z_2 - z_1] f'(z_0)$$

by the equality between complex numbers, we get

initesimal angles:

$$\theta^* = \arg[w_2 - w_1] = \theta + \arg f'(z_0)$$

infinitesimal magnitudes:

$$|\ell^* = |w_2 - w_1| = |\ell| f'(z_0)$$

ISEQUENCES of the Law on infinitesimal angles:

$$\theta^* = \arg[w_2 - w_1] = \theta + \arg f'(z_0)$$

Theor. If f(z) is holomorphic at z_0 and $f'(z_0)\neq 0$ then the map w=f(z) is conformal at z_0

Proof:

Let α be the angle between two curves (γ_1 and γ_2) which are

 $\alpha = \theta_2 - \theta_1$ intersecting at z_0 : Let α^* (image of α) be the angle between the curves (η_1 and η_2) which are the images of γ_1 and γ_2 by means of w=f(z):

$$\alpha^* = \theta_2^* - \theta_1^* = [\theta_2 + \arg f'(z_0)] - [\theta_1 + \arg f'(z_0)] = \alpha$$

Then

Law on local arc transformation (5/5)

The map w=f(z) locally behaves as:

$$\theta^* = \theta + \arg f'(z_0)$$
 rotation by angle $\arg f'(z_0)$

Law on infinitesimal magnitudes:

$$\ell^* = \ell \cdot |f'(z_0)|$$
 — homothety with factor $|f'(z_0)|$

Geometric interpretation of derivative of a complex fun

If f(z) is holomorphic, then the map w=f(z), at each point such that $f'(z)\neq 0$, can be locally considered as the composition of a rotation (by an angle $\arg f'(z)$) and a homothety (with a factor |f'(z)|).

Example: what does "local behavior" mean? (1/3)

$$\mathsf{map} \qquad \mathsf{w} = f(\mathsf{z}) = \mathsf{z}^2$$

$$f'(z) = 2z \neq 0 \Leftrightarrow z \neq 0$$

We consider two squares around zor

Then we transform both of them:

- 1. by means of: $w = z^2$
- 2. by means of: $W = w_0 + f'(z_0)[z z_0]$ and compare their images.

 $-|f'(z_0)|e^{i\arg f'(z_0)}$

homothety rotation

Critical points of a transformation

Given a transformation $w \Rightarrow f(z)$, all the points such that f'(z) = 0 are said critical points.

At each critical point:

- the transformation is non-invertible;
- the transformation is non-conformal.