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2D mappings in complex form
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Complex-valued functions of a complex variable f(z) can be

considered as mappings between two complex planes: the origin
domain is the z-plane, where z=x+iy, and the image domain is the
w-plane where w=f{z)

U
z=x+iy, w=f(z)=u+iv = T:{
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Examples 8
z-plane = (x,y)-plane w-plane = (u,v)-plane o
z=x+iy w=f(z)=iz U=-—y w = u+iv a
w = T(xy): |
V=X

Since i=e*™/2, the transformation corresponds to a 90 degree rotation (w = ze**/2).
e 5
£
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Euler’s formula TE’
e'%=cos0+isind 5
w=flz) = e u=e*cos(y) £
w = T(xy): : >

exponential map V= e'xS"\( )
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vertical lines are horizontal lines are g_
mapped to circles mapped to rays =

from the origin




z-plane = (x,y)-plane
Z=x+1iy

vertical lines are mapped to
left facing parabolas

Example

w = f(z) =22 — 2 2
w = T(xy): u_ N | Y
quadratic map V= 236)/

w-plane = (u,v)-plane
w = u+1v

imag(w)
imag(w)

| horizontal lines
—__| are mapped to
| right facing
parabolas

real(z)
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Conformal mappings: definitions

SCp2_08b.5

DEF: conformal Mapping: the magnitude of local angles and their orienta-
tion are preserved (the angle remains the same).

w=f(z) 0\ 6wl %
conformal | | 2
we=w(Zy g
S
DEF: Anticonformal Mapping: the magnitude of local angles is preserved,
but their orientation is inverted (the angle changes its sign).
WO:W(ZO\ E
\ ] &
w(r) <
w=f(z) H
anticonformal wis)




Holomorphic functions and
conformal mappings
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THEOREM

Every holomorphic function (w.r.t. z) describes a
plane transformation that is conformal in all the
points where its derivative is not zero.

[... we will prove it later]

Conformal Mappings

The opposite is also true.

Every conformal plane transformation originates
from a holomorphic function (w.r.t. z) whose deri-
vative is not zero.

=
©
| .
(]
N
Ba,
o
Y
(o)
| -
Q.
 —

A similar theorem holds for holomorphic functions w.rt. Z and anti-
conformal mappings.




Where do conformal mappings originate from?

What conditions must be satisfied by a transformation of the complex
plane into itself, w=f(z), in order to leave the Laplace eq. unchanged?
That is, what are the transformations able to preserve the harmomcnty?

f i z=x+iyeC—ow=1f(z) = u+iveC w=f(2) {v ny

Property

If ¥(u,v) is a harmonic function of u,v and the function w=f(z)
Is a holomorphic function, then the composite function

@(x,y) = ¥(u(x,y),v(x,y))

IS a harmonic function of x, y.

The proof applies the “chain rule” to differentiate a composite function.
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Where do conformal mappings originate from?

Theor.: In order to mantain the Laplace Equation unchanged,
after applying the plane transformation

SCp2_08b.8

(%)
v(x,y)

¢.+t9,=0 ':[> ¥Y,.+¥,=0

this map must satisfy the following equations:

T: z=x+iy ——> w=w(2)=w(x,y) {u “

Conformal Mappings

rau_%_(?v r&’u_ ov
O0x Oy { Ox Oy
1 or alternatively |-
(9u o 6?} au _ 81} ~
Oy 0x Oy Ox i
Cauchy-Riemann eqs w.r.t. 7 Cauchy-Riemann eqs w.rt. Z ;
T conformal map* T anticonformal map g

* .we will prove it later

The mapping must be conformal or anticonformal




Example 1 w=f(z)=z>

f(z) holomorphic atz, w.rt. z | %L(z)=1im 2L

dz
"%_4_@ o
dx  dy| E . [u=u(xy)
1 S w=u+1v: B
Ou_ _Ov| g =v(x,y)
Oy ox| ©

Az—0 AZ

= lim

=2 Az

iu(x y)=x -y’

v(x,y)=2xy

DEF.: Conformal Mapping: the magnitude of local angles and their orientation are preserved (the

angle remains the same).

7N
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Example 2 w=f(z)=Z2 F

(@

; =1 A\ &F _ o (2 +82)—F(z) | o

f(z) holomorphic at z, w.r.t. Z & (%)= lim == lim = 3

(Ou  Ov E

_— = —— [ — x, h 2_ 2
* 0x 8y qz_ w:u+iv: u( y) W:%Z u(x»Y) X y
ou_  0Ov| § v=1(x,y) v(x,y)=—2xy

Oy  Ox| 5 "

DEF: Anticonformal Mapping: the magnitude of local angles is preserved, but their orientation §

is inverted (the angle changes its sign). S

£

m w(P) :
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Example 3: w=f(z)=z2+27> y
CDI
neither conformal nor anticonformal &
— _ a2 a2
w=u+iv: u=u(xy) w=2z"+27": u(x,y)=3x" -3y
v=yv(x,y) v(x,y)=—2xy
£
:

If a complex function is defined by a formula containing both Z and 2,
then it is differentiable neither w.r.t. Z nor w.r.t. Z.




2D mappings in complex form

Complex-valued functions of a complex variable f(z) can be considered as

mappings between two complex planes: the origin domain is the z-plane, where
z=x+iy, and the image domain is the w-plane where w=f{z)

u=u(x,y)
v=1v(x,y)
Once we have transformed the origin domain into the image domain, and solved
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z=x+iy, w=f(z)=u+iv = T:

the problem, we want to go back to the z-plane. g
y 3 %Q’-

K|

£

A 3

\/\ i H
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z-plane 4 w-plane <
We need the function f(z) be invertible (one-to-one map) at least locally. | §

2D mapping f: w=f(z) <:> inverse 2D mapping f~: z=f"1(w)




Basics: Invertibility of a real function

A real-valued function of a single real argument, y=f(x), is locally
invertible at x, if, and only if, f'(x,)#0 (locally monotonic).

Moreover, the derivative of the inverse function is

?/()Zf<370> = (fl),@o):f/(l%)

1=1)=F " AP 4B =W

invertible/ .

non-invertible
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Jacobian matrix of a 2D transformation
w=T(z) : T(zy)=|"|:

f w-plane

z-plane . U
2=z +1y= [y] tranSfOI:matiOI‘,> WS = v]
l

Definition A coordinate transformation T(x,y) is differentiable at a point
(X0.y0) if there exists a matrix J(x,,y,) such that
)

- T(x,y)—T(x0,¥5) = I (%9. ) ;]_[;Z] . <:| T(x,y):T(xo,y0)+J(xo,yo){[i]—[;z]
infinitesimal

A

2

+o

When it exists, J(x,,V,) is the total derivative of T(x,y) at (x,.y,). It can be shown that
this matrix is given by the Jacobian Matrix of the transformation: J(z,,y, )= o(u.0) (9,9, )

0(z,y)

If z=z(t) is a curve in the (x,y)-plane and w=w(t) its image in the (u,v)-plane:

() u(x(r)y(r))
Z(r):[ ], re[a,b] w(t)=T x(r ,y(r) =

o) B =l )= o o), 4(0)
and if z(t) is smooth, then the Jacobian matrix maps any tangent vector to a curve at a
given point, in the z-plane, to a tangent vector to the image of the curve at the image of
that point, in the w-plane:

w'(1)— dw _ [u
dt v

, rE[a,b]
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Example
z-plane = (x,y)-plane w-plane = (u,v)-plane

2

z(t)z[:]z[;] w fT(x,y):[uf z*—y w(r)ZT(fc(r)»y(t))z[u

quadratic map V= zxy

tangent line at z,=z(7,) in z-plane: T:z = Z(TO)—FKZ'(TO), ALeR
tangent line at wy=w(t,) in w-plane:

inplaceof Tt :w=w(t,)+Aw'(7,), AER
wecanuse T iw=w(t,)+AJ(2(1y), (%)) 2" (7o)

z'(ty) -
tangent

w=w(t)="T(z(x),y(x))

_'0)
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Theorem on local invertibility of mappings

A 2D tranformation f : zeC' —— W“f(z) (x,y)+iv(x,y)€@* 32:((:;))

is one-to-one at a point (locally invertible) if the Jacobian |J] (i.e. the determinant of the
Jacobian matrix J) does not vanish at that point.

Theor.: If f(z) is holomorphic in A, then the mapping w=f(z) is

regular invertible at every point z,€ A such that f*(z,) #0.

Proof: If f(z) is holomorphic at z,, then the Cauchy-Riemann Equations hold and
the Jacobian of the mapping is such that:

ou ou
7 8_x(x s Y, ) 6_y(x@ay )'

ov ov
a(x@),}y@) 8—y(x,,>y®)

Then the mapping w=f(z) is regular invertible at every point z, such that
f'(z0) #0.

(x,.9, )] =|r'(z)

The points z* such that f'(z*)=0 are said critical points of
the mapping w=f(z).
The mapping is not invertible at each critical point.

SCp2_08b.16

Conformal Mappings

=
©
| .
(]
N
Ba,
o
Y
(o)
| -
Q.
 —




Example: ; critical point for the quadratic map g
=2 o

rtible //// ;

/////////
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