

L. Magistrale in IA (ML&BD)

Scientific Computing (part 2 – 6 credits)

prof. Mariarosaria Rizzardi

Centro Direzionale di Napoli – Bldg. C4

<u>room</u>: n. 423 – North Side, 4th floor

phone: 081 547 6545

email: mariarosaria.rizzardi@uniparthenope.it

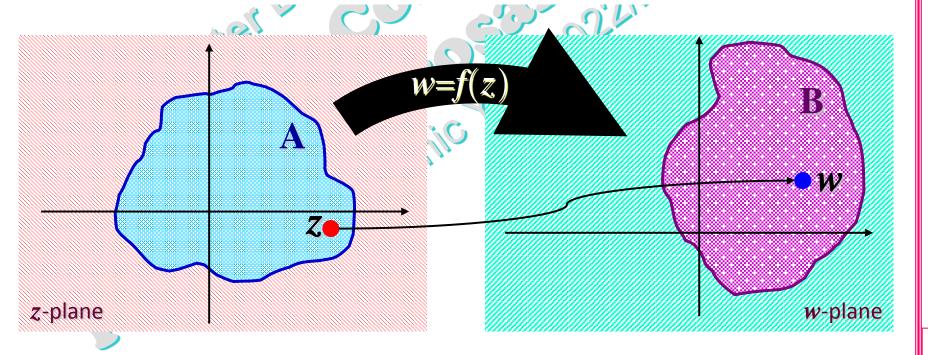
Contents

- Complex form of 2D mappings.
- Conformal and anticonformal mappings.
- Holomorphic functions and conformal mappings.
- Origin of conformal mappings.
- Local invertibility of plane mappings.
- Jacobian of 2D transformations.
- Critical points.

2D mappings in complex form

Complex-valued functions of a complex variable f(z) can be considered as mappings between two complex planes: the origin domain is the z-plane, where z=x+iy and the image domain is the w-plane where w=f(z)

$$z = x + iy$$
, $w = f(z) = u + iv$ \Rightarrow $T:$
$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$



Examples

z-plane =
$$(x,y)$$
-plane $z = x + iy$

$$\mathbf{w} = f(z) = iz$$

 $\mathbf{w} = \mathbf{T}(x,y)$:
$$\begin{cases} u = -y \\ v = x \end{cases}$$

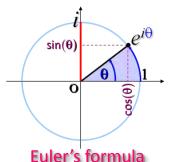
Im(w)

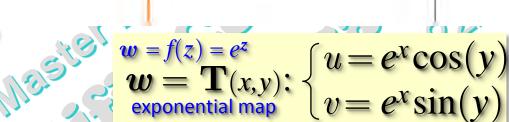
w-plane = (u, v)-plane w = u + iv

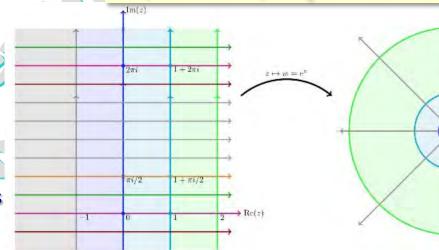
Re(w)

Since $i=e^{+i\pi/2}$, the transformation corresponds to a 90 degree rotation ($w \neq ze^{+i\pi/2}$).

Im(z)







horizontal lines are mapped to rays from the origin

Re(w)

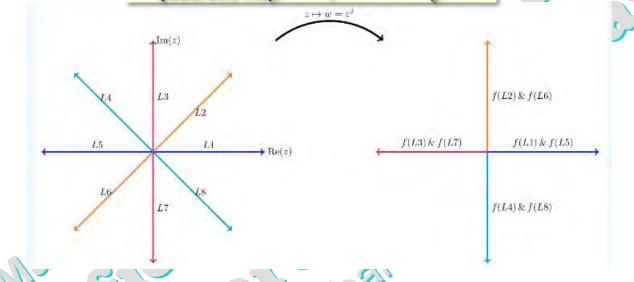
w-plane = (u, v)-plane

Example

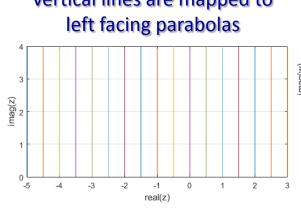
z-plane =
$$(x,y)$$
-plane $z = x + iy$

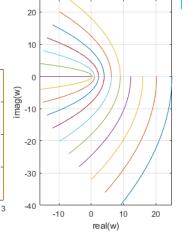
$$w = f(z) = z^2$$

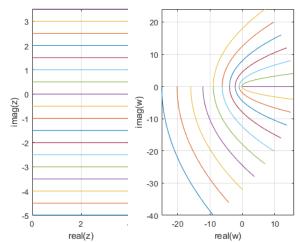
 $w = T(x,y)$:
$$\begin{cases} u = x^2 - y^2 \\ v = 2xy \end{cases}$$



vertical lines are mapped to left facing parabolas





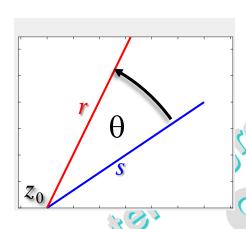


right facing parabolas

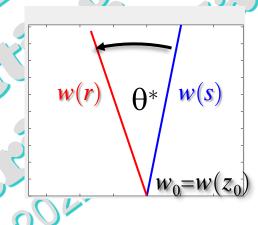
horizontal lines are mapped to

Conformal mappings: definitions

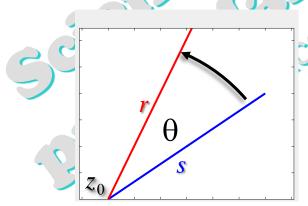
Conformal Mapping: the magnitude of local angles and their orientation are preserved (the angle remains the same).



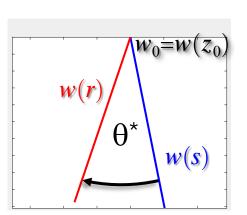




Anticonformal Mapping: the magnitude of local angles is preserved, but their orientation is inverted (the angle changes its sign).



$$w = f(z)$$



Holomorphic functions and conformal mappings

THEOREM

Every holomorphic function (w.r.t. z) describes a plane transformation that is conformal in all the points where its derivative is not zero.

[... we will prove it later]

The opposite is also true.

Every conformal plane transformation originates from a holomorphic function (w.r.t. z) whose derivative is not zero.

A similar theorem holds for holomorphic functions w.r.t. \overline{z} and anticonformal mappings.

Where do conformal mappings originate from?

What conditions must be satisfied by a transformation of the complex plane into itself, w=f(z), in order to leave the Laplace eq. unchanged? That is, what are the transformations able to preserve the harmonicity?

$$f: z=x+iy \in \mathbb{C} \longrightarrow w = f(z) = u+iv \in \mathbb{C}$$

$$w = f(z)$$

$$v = u(x,y)$$

$$v = v(x,y)$$

Property

If $\Psi(u,v)$ is a harmonic function of u,v and the function w=f(z) is a holomorphic function, then the composite function

$$\varphi(x,y) = \Psi(\mathbf{u}(x,y), \mathbf{v}(x,y))$$

is a harmonic function of x, y.

The proof applies the "chain rule" to differentiate a composite function.

Where do conformal mappings originate from?

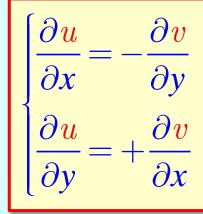
Theor.: In order to mantain the Laplace Equation unchanged, after applying the plane transformation

$$T: z = x + iy \longrightarrow w = w(z) = w(x,y) \begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$

this map must satisfy the following equations:

$$\begin{cases} \frac{\partial u}{\partial x} = +\frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

or alternatively



Cauchy-Riemann eqs w.r.t. z Cauchy-Riemann eqs w.r.t. \overline{z}

T conformal map*

*...we will prove it later

T anticonformal map

The mapping must be conformal or anticonformal

$$f\left(z
ight)$$
 holomorphic at z_{0} w.r.t. z

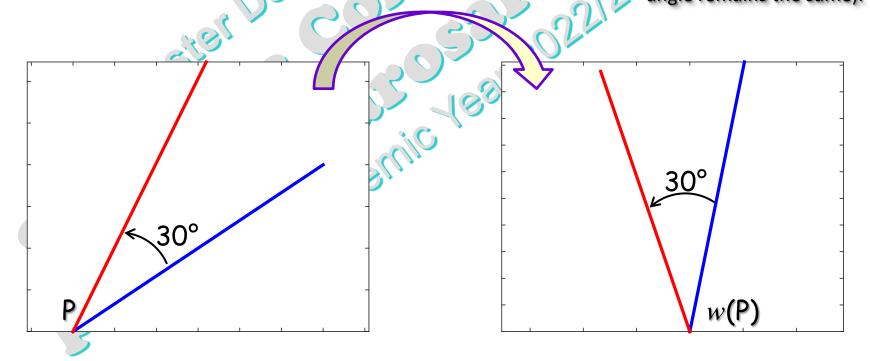
$$f(z) \text{ holomorphic at } z_0 \text{ w.r.t. } z \qquad \frac{df}{dz}(z_0) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{z \to z_0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$\begin{cases} \frac{\partial u}{\partial x} = +\frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

$$w = u + iv: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

$$w = u + iv: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases} \qquad w = z^2: \begin{cases} u(x, y) = x^2 - y^2 \\ v(x, y) = 2xy \end{cases}$$

Conformal Mapping: the magnitude of local angles and their orientation are preserved (the angle remains the same).



$$f(z)$$
 holomorphic at z_0 w.r.t. \overline{z} $\frac{df}{d\overline{z}}(z_0) = \lim_{\Delta z \to 0} \frac{\Delta f}{\overline{\Delta z}} = \lim_{z \to z_0} \frac{f(z_0 + \Delta z) - f(z_0)}{\overline{\Delta z}}$

$$\begin{bmatrix}
\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} = +\frac{\partial v}{\partial x}
\end{bmatrix}$$

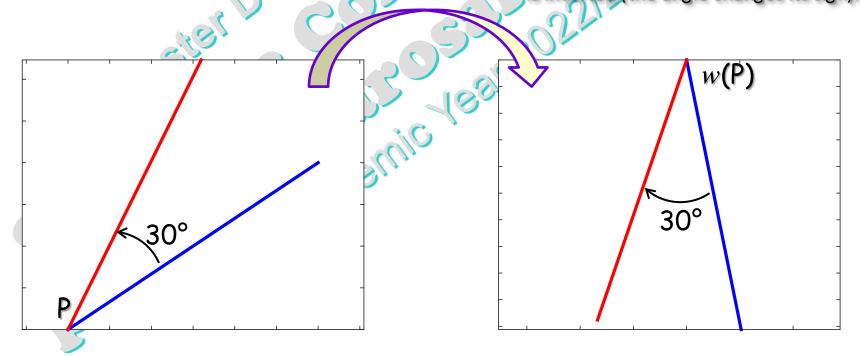
$$w = u + iv:$$

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

$$w = u + iv:\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

$$w = \overline{z}^{2}:\begin{cases} u(x, y) = x^{2} - y^{2} \\ v(x, y) = -2xy \end{cases}$$

Anticonformal Mapping: the magnitude of local angles is preserved, but their orientation is inverted (the angle changes its sign).



Example 3: $w = f(z) = z^2 + 2\bar{z}^2$

neither conformal nor anticonformal

$$w = u + iv: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases} \qquad w = z^{2} + 2\overline{z}^{2}: \begin{cases} u(x, y) = 3x^{2} - 3y^{2} \\ v(x, y) = -2xy \end{cases}$$

$$\neq 30^{\circ}$$

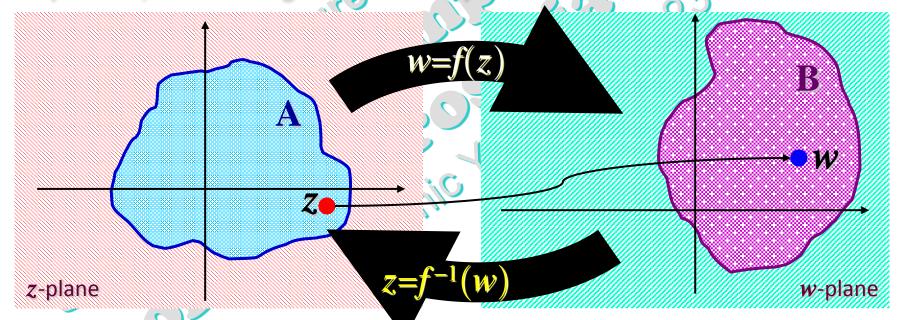
If a complex function is defined by a formula containing both z and \overline{z} , then it is differentiable neither w.r.t. z nor w.r.t. \overline{z} .

2D mappings in complex form,

Complex-valued functions of a complex variable f(z) can be considered as mappings between two complex planes: the origin domain is the z-plane, where z=x+iy, and the image domain is the w-plane where w=f(z)

$$z = x + iy$$
, $w = f(z) = u + iv$ \Rightarrow $T: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$

Once we have transformed the origin domain into the image domain, and solved the problem, we want to go back to the z-plane.



We need the function f(z) be invertible (one-to-one map) at least locally.

2D mapping
$$f: w=f(z)$$
 inverse 2D mapping $f^{-1}: z=f^{-1}(w)$

Basics: Invertibility of a real function

A real-valued function of a single real argument, y=f(x), is locally invertible at x_0 if, and only if, $f'(x_0) \neq 0$ (locally monotonic).

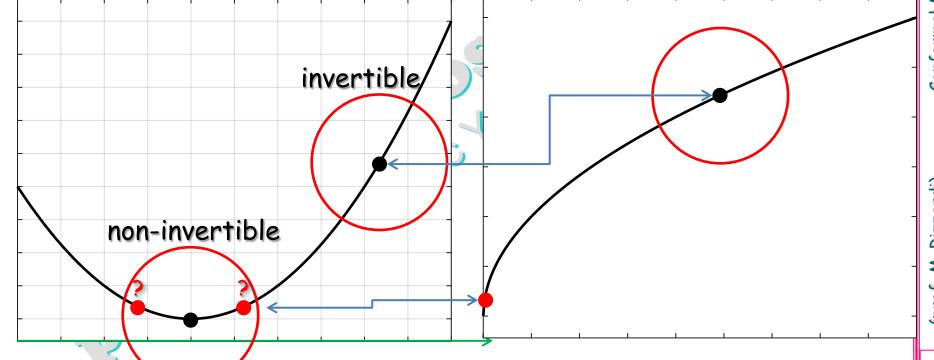
Moreover, the derivative of the inverse function is

$$y_0 = f(x_0) \Rightarrow (f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

$$y = f(x) = x^2$$

$$x = f^{-1}$$

$$y = f(x) = x^2$$
 $x = f^{-1}(y) = \sqrt{y}$



Jacobian matrix of a 2D transformation

$$w = \mathbf{T}(z) : \mathbf{T}(x,y) = \begin{pmatrix} u \\ v \end{pmatrix} : \begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$

$$\frac{w}{v} = u + iv = \begin{pmatrix} u \\ v \end{pmatrix}$$

Definition A coordinate transformation T(x,y) is differentiable at a point (x_0,y_0) if there exists a matrix $J(x_0,y_0)$ such that

When it exists, $J(x_0, y_0)$ is the total derivative of T(x, y) at (x_0, y_0) . It can be shown that this matrix is given by the Jacobian Matrix of the transformation: $J(x_0, y_0) = \frac{\partial(u, v)}{\partial(x, y)}(x_0, y_0)$

If $z=z(\tau)$ is a curve in the (x,y)-plane and $w=w(\tau)$ its image in the (u,v)-plane:

z-plane $z = x + iy = \begin{bmatrix} x \\ y \end{bmatrix}$

$$z(\tau) = \begin{pmatrix} x(\tau) \\ y(\tau) \end{pmatrix}, \quad \tau \in [a,b] \qquad w(\tau) = T(x(\tau),y(\tau)) = \begin{pmatrix} u(x(\tau),y(\tau)) \\ v(x(\tau),y(\tau)) \end{pmatrix}, \quad \tau \in [a,b]$$

and if $z(\tau)$ is smooth, then the **Jacobian matrix** maps any tangent vector to a curve at a given point, in the z-plane, to a tangent vector to the image of the curve at the image of that point, in the w-plane:

$$w'(\tau) \longrightarrow \frac{dw}{d\tau} = \begin{bmatrix} u_x x'(\tau) + u_y y'(\tau) \\ v_x x'(\tau) + v_y y'(\tau) \end{bmatrix} = \underbrace{\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}} \begin{pmatrix} x'(\tau) \\ y'(\tau) \end{pmatrix} = \underbrace{J(x(\tau), y(\tau))} \frac{dz}{d\tau} \longleftarrow z'(\tau)$$

Example

z-plane = (x, y)-plane

$$z(au) = egin{pmatrix} x \ y \end{pmatrix} = egin{pmatrix} au \ au^2 \end{pmatrix}$$

$$z(\tau) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \tau \\ \tau^2 \end{pmatrix} \qquad w = T(x,y) : \begin{cases} u = x^2 - y^2 \\ v = 2xy \end{cases} \qquad w(\tau) = T(x(\tau), y(\tau)) = \begin{pmatrix} u(\tau) \\ v(\tau) \end{pmatrix}$$
 quadratic map

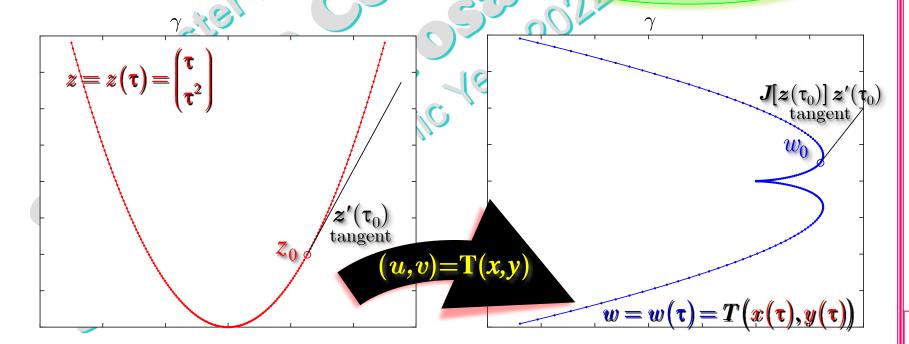
w-plane = (u, v)-plane

$$w(au) = Tig(x(au), y(au)ig) = egin{bmatrix} u(au) \ v(au) \end{bmatrix}$$

tangent line at $z_0=z(\tau_0)$ in z-plane: $\tau:z=z(\tau_0)+\lambda z'(\tau_0), \quad \lambda\in\mathbb{R}$ tangent line at $w_0=w(\tau_0)$ in w-plane:

in place of
$$\tau^*: w = w(\tau_0) + \lambda w'(\tau_0), \quad \lambda \in \mathbb{R}$$

we can use
$$\tau^*: w = w(\tau_0) + \lambda J(x(\tau_0), y(\tau_0))z'(\tau_0)$$



Theorem on local invertibility of mappings

A 2D tranformation $f: z \in \mathbb{C}^* \longrightarrow w = f(z) = u(x,y) + iv(x,y) \in \mathbb{C}^*$ $T\begin{vmatrix} u = u(x,y) \\ v = v(x,y) \end{vmatrix}$

is one-to-one at a point (locally invertible) if the Jacobian |J| (i.e. the determinant of the Jacobian matrix J) does not vanish at that point.

<u>Theor.:</u> If f(z) is holomorphic in A, then the mapping w=f(z) is regular invertible at every point $z_0 \in A$ such that $f'(z_0) \neq 0$.

Proof: If f(z) is holomorphic at z_0 , then the Cauchy-Riemann Equations hold and the Jacobian of the mapping is such that:

$$\left| J(x_{0}, y_{0}) \right| = \left| \frac{\partial u}{\partial x}(x_{0}, y_{0}) \frac{\partial u}{\partial y}(x_{0}, y_{0}) \right| = \left| \frac{\partial u}{\partial x}(x_{0}, y_{0}) \right|^{2} + \left| \frac{\partial v}{\partial x}(x_{0}, y_{0}) \right|^{2} = \left| f'(z_{0}) \right|^{2}$$

Then the mapping w=f(z) is regular invertible at every point z_0 such that

The points z^* such that $f'(z^*)=0$ are said **critical points** of the mapping w=f(z).

The mapping is not invertible at each critical point.

