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Steady-state performance

ñ The steady-state performance depends on the class of input signals
𝑅 𝑠 , 𝐷 𝑠 , 𝑁 𝑠 and the type of polynomial transfer function 𝐹(𝑠)

ñ Tracking of the reference input 𝑹 𝒔

ò Null or bounded steady-state error to polynomial inputs (DONE)

ò Null or bounded steady-state error to sinusoidal inputs at fixed frequency

ñ Rejection of the disturbs D(s)

ò Null or bounded steady-state error to polynomial inputs (DONE)

ò Bounded steady-state error to multi-frequency sinusoidal inputs

ñ Insensibility to the noise 𝑵 𝒔

ò Bounded steady-state error to multi-frequency sinusoidal inputs



Prof. Francesco Montefusco Automatic Control Systems 2022/233

Steady-state error to sinusoidal reference at 
fixed frequency

ñ Let us consider a sinusoidal reference at frequency 𝜔!

𝑟 𝑡 = 𝑅!𝑠𝑖𝑛 𝜔!𝑡 with Laplace transform      𝑅 𝑠 = "
#!$""!

ñ The steady state error to a sinusoidal reference signal can be written as

𝑒## 𝑡 = 𝑅! 𝑆(𝑗𝜔!) 𝑠𝑖𝑛(𝜔!𝑡 + ∠𝑆(𝑗𝜔!))

where 𝑆 𝑠 = %
%$&(#)

is the sensitivity function.
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Steady-state error to sinusoidal reference at 
fixed frequency

ñ In order to achieve null steady-state error we need that

𝑆(𝑗𝜔!) =
1

1 + 𝐹(𝑗𝜔!)
= 0 .

ñ This can be achieved with a pair of imaginary zeros at the frequency 𝜔! of the
input signal in the sensitivity function (antiresonance)

ñ Hence a pair of imaginary poles have to be added in the O.L. function 𝐹(𝑗𝜔!)

ñ If the imaginary poles are not included in the plant model 𝐺 𝑠 , they have to be
added in the controller

𝐾 𝑠 =
𝑁)(𝑠)

(𝑠*+𝜔!*)𝐷)(𝑠)



Prof. Francesco Montefusco Automatic Control Systems 2022/235

Bounded steady-state error to multi-frequency 
sinusoidal disturbs

ñ The disturbs are sometimes characterized in the frequency domain instead of in 
the time domain

ñ The requirement on multi-frequency sinusoidal disturb is usually expressed by an
attenuation factor δ+ for sinusoidal disturbs in a frequency interval Ω+.

ñ This requirement is converted in terms of open loop function 𝐹(𝑠) constraint
taking into account that the steady state error to a sinusoidal disturb d 𝑡 =
𝐷!𝑠𝑖𝑛 𝜔!𝑡 can be written as

𝑒## 𝑡 = 𝐷! −𝑆(𝑗𝜔!) 𝑠𝑖𝑛(𝜔!𝑡 + ∠ − 𝑆(𝑗𝜔!))

where 𝑆 𝑠 = %
%$&(#)

is the sensitivity function. 
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Bounded steady-state error to multi-frequency 
sinusoidal disturbs

ñ Hence, the requirement on multi-frequency sinusoidal disturb turns out to be

𝑆(𝑗𝜔) < 𝛿, for all 𝜔 ∈ Ω+

ñ That is
1

1 + 𝐹(𝑗𝜔)
< 𝛿,

ω

𝛀𝐃 = {𝝎:𝝎 < 𝝎𝑫}

𝑭(𝒋𝝎)

ñ Taking into account that 𝛿, ≪ 1,
the previous inequality is almost
equivalent to
1

𝐹(𝑗𝜔)
< 𝛿, → |𝐹 𝑗𝜔 | > ⁄1 𝛿, 𝝎𝑫

𝟏
𝜹𝑫

Forbidden
zone
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Bounded steady-state error to multi-frequency 
sinusoidal noise

ñ The noise is usually characterized in the frequency domain as a multi-frequency 
sinusoidal signal 

ñ The requirement on multi-frequency sinusoidal noise is usually expressed by an 
attenuation factor δ- for  sinusoidal noise in a frequency interval  Ω-.

ñ This requirement is expressed in terms of open loop function 𝐹(𝑠) taking into
account that the steady state controlled output to a sinusoidal noise n 𝑡 =
𝑁!𝑠𝑖𝑛 𝜔!𝑡 can be written as

𝑦## 𝑡 = 𝑁! 𝑇(𝑗𝜔!) 𝑠𝑖𝑛(𝜔!𝑡 + ∠𝑇(𝑗𝜔!))

where 𝑇 𝑠 = & #
%$&(#)

is the complementary sensitivity function. 
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Bounded steady-state error to multi-frequency 
sinusoidal noise

ñ Hence, the requirement on multi-frequency sinusoidal noise turns out to be

𝑇(𝑗𝜔) < 𝛿. for all 𝜔 ∈ Ω-

ñ That is
𝐹(𝑗𝜔)

1 + 𝐹(𝑗𝜔)
< 𝛿.

ω

𝛀𝐍 = {𝝎:𝝎 > 𝝎𝑵}

𝑭(𝒋𝝎)

ñ Taking into account that 𝛿. ≪ 1,
the previous inequality is almost
equivalent to

𝐹(𝑗𝜔) < 𝛿. 𝝎𝑵
𝜹𝑵

Forbidden
zone
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Rejection of multi-frequency disturbs and noise 

ñ The requirement on multi-frequency sinusoidal disturbs implies that  

𝑆(𝑗𝜔) < 𝛿, for all 𝜔 ∈ Ω+ → |𝐹 𝑗𝜔 | > ⁄1 𝛿,

ñ The requirement on multi-frequency sinusoidal noise implies that

𝑇(𝑗𝜔) < 𝛿. for all 𝜔 ∈ Ω- → |𝐹 𝑗𝜔 | < 𝛿.

ñ The two requirements can be imposed simultaneously only if Ω+ and Ω- are
disjoint.

ñ Usually the multi-frequency disturbs are at low frequencies (𝝎 < 𝝎𝑫) while the
multi-frequency noise is at high frequencies (𝝎 > 𝝎𝑵) .
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Rejection of multi-frequency disturbs and noise 

ñ In order to satisfy the requirements on multi-frequency disturbs and noise, the 
open loop transfer function 𝐹 𝑗𝜔 should behave similarly to a low pass filter

ñ 𝐹 𝑗𝜔 can also contain poles in the origin if it is requested by steady-state 
requirements on polynomial reference signals and disturbs
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Rejection of multi-frequency disturbs and noise 
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