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Stability of the closed loop system

ñ Let us consider the 𝑅 𝑠 → 𝑌(𝑠) closed loop system

ñ Assume that the hidden modes of the open loop function 𝐹 𝑠 = 𝐾 𝑠 𝐺(𝑠) are
asymptotically stable

ñ The stability of the closed loop system depends on the poles of the transfer
function

F 𝑠+
+
-

Y(s)R(s) E(s)

T 𝑠 = ! "
#$! "
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Stability of the closed loop system

ñ Indicate with 𝑁! 𝑠 and 𝐷! 𝑠 the numerator and the denominator of the open
loop function

F 𝒔 = 𝑵𝑭 𝒔
𝑫𝑭 𝒔

= 𝑵𝑲 𝒔 𝑵𝑮 𝒔
𝑫𝑲 𝒔 𝑫𝑮 𝒔

,

ñ The closed loop function can be written as

T 𝒔 =
𝑵𝑭 𝒔
𝑫𝑭 𝒔

𝟏 $ 𝑵𝑭 𝒔
𝑫𝑭 𝒔

= 𝑵𝑭(𝒔)
𝑫𝑭(𝒔)$𝑵𝑭 𝒔

.

ñ The denominator of 𝑇(𝑠) is given by the sum of 𝑁! 𝑠 and 𝐷! 𝑠 ; therefore, the
design problem of a controller able to guarantee the stability of the closed loop
system is to be very demanding.

ñ By means of the Nyquist plots and the Nyquist criteria, we are going to determine
the stability of the closed loop system from the open loop system features
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Nyquist plots

ñ The Nyquist plots are polar diagrams of the transfer function 𝑭 𝒔 |𝒔+𝒋𝝎

𝑅𝑒(𝐹(𝑗𝜔))

𝐼𝑚(𝐹(𝑗𝜔))

𝝎𝟏

𝝎𝟐
𝝎𝟑𝝎𝟒

𝝎𝟓

𝝎𝟔

𝝎𝟕

𝑭 𝒔 is represented in 
the polar plane as a 
function of  𝒋𝝎
assuming 𝝎 moving 
from 𝟎 to +∞

ñ They are an alternative solution to the Bode
diagrams for the representation of the transfer
functions.

ñ In a Nyquist plot magnitude and phase of 𝑭(𝒋𝝎)
are represented by a curve parametrized in 𝝎.

𝑅𝑒(𝐹(𝑗𝜔))

𝐼𝑚(𝐹(𝑗𝜔))

𝝎∗

|𝐹 𝑗𝜔∗ |

∠𝐹 𝑗𝜔∗
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Nyquist plots: example 1

ñ The Nyquist plots can be obtained from the magnitude and phase Bode plots of

F 𝑠 = -
-./

𝝎𝟏 ∈]𝟎 , 𝟎. 𝟏[

𝝎𝟐 ≅ 𝟏𝒓𝒂𝒅/𝒔

ñ Note that a single point on the Nyquist plots can also indicate the value of 𝐹 𝑗𝜔
in a finite interval of 𝜔.
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Nyquist plots: first-order open loop system

|𝐹 𝑗𝜔 |'( = 20log)*|𝐹 𝑗𝜔 |;
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𝐹 𝑠 = 0
)+1t , t = 1 s, =

𝑘
1 + 𝜔t /

;
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Nyquist plots: second-order open loop system
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Nyquist plots: third-order open loop system
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Nyquist plot for the  closed loop stability analysis

ñ A precise representation of the Nyquist plots from magnitude and phase Bode
plots isn’t an easy job.

ñ However, if we focus on the closed loop stability performance, only a limited set
of points on the Nyquist point need to be traced precisely:

1. Intersection of the diagram with the unit circle

2. Intersection of the diagram with the negative real axis.

Indeed, it is of interest to verify if the diagram intersects, encircles the
Critical point −𝟏 + 𝒋𝟎

𝑅𝑒(𝐹(𝑗𝜔))

𝐼𝑚(𝐹(𝑗𝜔))

𝝎𝟏

𝝎𝟐−𝟏
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Phase variation

ñ For the analysis of closed loop system an important parameter to be considered is
the Phase Variation

defined as the phase variation of F jω when 𝜔 moves from −∞ to ∞ counted
positive if counterclockwise.

ñ In order to evaluate the phase variation we also need to plot 𝐹(𝑗𝜔) when 𝜔
moves from −∞ to 0.

ñ For polynomial functions

𝑅𝑒 𝐹 −𝑗𝜔 = 𝑅𝑒 𝐹 𝑗𝜔 Pair function

𝐼𝑚 𝐹 −𝑗𝜔 = −𝐼𝑚 𝐹 𝑗𝜔 Odd function

ñ Hence, the Nyquist plots of 𝐹(𝑗𝜔) for negative and positive angular frequencies
are symmetric wrt the real axis.

Δ∠𝐹(𝑗𝜔)
−∞𝝎 ∞
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Nyquist plot and phase variation: example

ñ Let us consider again the transfer function F 𝑠 = -
-./

𝝎 = 𝟏

𝝎 = 𝟎*𝝎 → +∞

𝝎 → −∞

𝝎 = −𝟏

𝝎 = 𝟎+

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= −𝜋
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Nyquist plot and phase variation: example

ñ Let us consider the transfer function F 𝑠 = -
-./ *

𝝎 = 𝟎*

𝝎 → +∞

∠𝐹 𝑗𝜔 = −
3
2𝜋 𝝎 = 𝟎+

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= −3𝜋

𝝎 → −∞

∠𝐹 𝑗𝜔 =
3
2𝜋
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Formula for the phase variation 

ñ In the following we propose a formula for the phase variation of a transfer
function 𝐹(𝑗𝜔) as a function of the number and sign of 𝐹(jω) poles and zeros

ñ We will first evaluate the phase variation due to real no null poles and zeros.

ñ Then, we will extend the evaluation to the case of complex poles and zeros having
a null real part.
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Phase variation for negative real poles and zeros

𝝎 = 𝟎*𝝎 → +∞

𝝎 → −∞ 𝝎 = 𝟎+

𝝎 → −∞

𝝎 → +∞

𝝎 = 𝟎+

𝝎 = 𝟎*

F 𝑠 = -
-.J/

F 𝑠 = 1 + 𝜏𝑠 Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= −𝜋

Negative real pole (𝝉 > 𝟎)

Negative real zero (𝝉 > 𝟎) 

→

→
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Phase variation for positive real poles and zeros

𝝎 = 𝟎+𝝎 → −∞

𝝎 → +∞ 𝝎 = 𝟎*

𝝎 → +∞

𝝎 → −∞

𝝎 = 𝟎*

𝝎 = 𝟎+

F 𝑠 = -
-.J/

F 𝑠 = 1 + 𝜏𝑠 Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= −𝜋

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋

Positive real pole (𝝉 < 𝟎)

Positive real zero (𝝉 < 𝟎) 

→

→
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Phase variation for complex poles with 𝜁 ≠ 0

F 𝑠 = -

-. +,
-.
/. /+

-.
+

→ Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= −2𝜋
Negative complex poles (𝜻 > 𝟎) 

F 𝑠 = 1 + KL
M.
𝑠 + /+

M.+
→ Δ∠𝐹 𝑗𝜔

−∞𝝎 ∞
= 2𝜋

Negative complex zeros (𝜻 > 𝟎) 

F 𝑠 = 1 + KL
M.
𝑠 + /+

M.+
→ Δ∠𝐹 𝑗𝜔

−∞𝝎 ∞
= −2𝜋

Negative complex zeros (𝜻 < 𝟎) 

F 𝑠 = -

-. +,
-.
/. /+

-.
+

→ Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 2𝜋
Positive complex poles (𝜻 < 𝟎) 
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Phase variation formula

ñ The previous results allows to relate the phase variation to the number and sign of
poles/zeros of the transfer function.

Given a transfer function 𝐹 𝑗𝜔 , said:

• 𝒏 the total number of poles

• 𝒎 the total number of zeros

• 𝒏𝒑 (𝒏𝒏) the number of poles with positive (negative) real part

• 𝒎𝒑 (𝒎𝒏) the total number of zeros with positive (negative) real part

Δ∠𝐹 𝑗𝜔
−∞𝝎 ∞

= 𝜋 𝑚N − 𝑛N − 𝜋 𝑚O − 𝑛O
= 𝜋 𝑚 − 𝑛 − 2𝜋(𝑚O − 𝑛O)

𝒏 = 𝒏𝒏 + 𝒏𝒑 𝒎 = 𝒎𝒏 +𝒎𝒑


