

Course of "Automatic Control Systems" 2022/23

Control system requirements

Prof. Francesco Montefusco

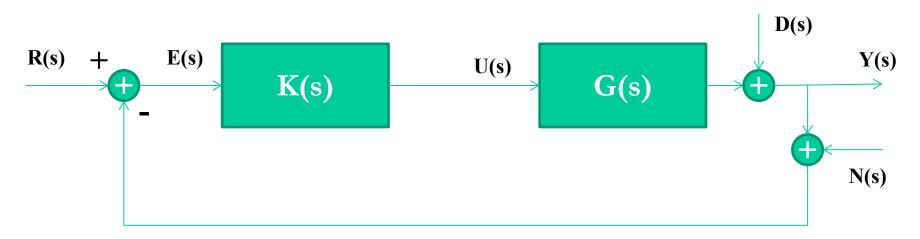
Department of Economics, Law, Cybersecurity, and Sports Sciences Università degli Studi di Napoli Parthenope

francesco.montefusco@uniparthenope.it

Team code: uxbsz19

Closed loop transfer function

A SISO closed loop control system in the Laplace domain can be indicated as



- G(s) plant to be controlled
- K(s) controller
- R(s) reference
- Y(s) controlled output
- U(s) control variable
- E(s) tracking error
- D(s) disturb
- N(s) measurement noise

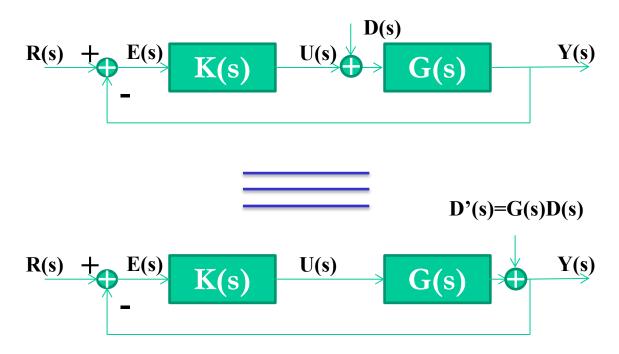
Closed loop function

$$W(s) = \frac{Y(s)}{R(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

$$(N(s)=0; D(s)=0)$$

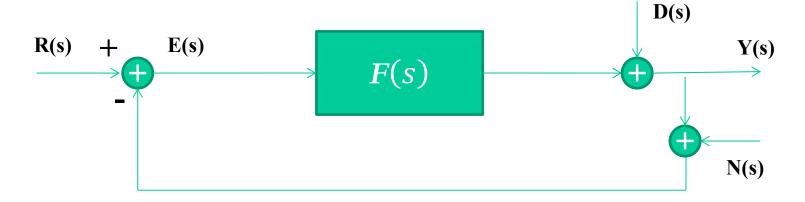
Closed loop function

- The *transfer function* G(s) usually contains the plant and the actuator and the sensors dynamics.
- In the previous scheme, the *disturb signal* D(s) is additive on the output. In other cases, it could also be summed to the plant input.



Open loop function F(s)

The transfer function given be the series of controller K(s) and plant G(s) is called *Open Loop (O.L.) function* F(s) = G(s)K(s)



- \blacktriangle The O.L. function F(s) assumes a main role in the control theory
- Indeed, it is easier to design a controller K(s) able to modify as desired F(s) instead of closed loop function $W(s) = \frac{G(s)K(s)}{1+G(s)K(s)}$
- $^{\wedge}$ It makes important to transform the closed loop requirements in terms of F(s) constraints.

Control requirements

- ▲ The closed loop control requirements can be divided in four classes:
 - **♦** Stability
 - **♦** Robust stability
 - **♦** Steady-state performances
 - **♦** Transient performances
- ▲ The control requirements must be verified taking into account the limits of the actuators.
- ▲ In this lesson we will introduce the main parameters usually used to quantify the set of requirements
- Then we will care about how to transform the requirements in terms of open loop function F(s) constraints

Stability

- ▲ The asymptotic stability of the nominal closed loop system is the most important property to be guaranteed.
- The asymptotic stability of the closed loop system implies that all the poles of the transfer function

$$W(s) = \frac{G(s)K(s)}{1 + G(s)K(s)} = \frac{F(s)}{1 + F(s)}$$

have negative real part.

 $^{\land}$ The poles of W(s) are the roots of the polynomial

$$\operatorname{num}(F(s)) + \operatorname{den}(F(s))$$

Stability

Mowever, it is difficult to design the controller K(s) such that the roots of $\operatorname{num}(F(s)) + \operatorname{den}(F(s))$

have negative real parts

A Routh criterion is useful for the system analysis but not for the control design

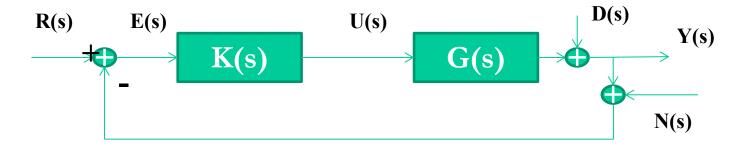
The *Nyquist criterion* provides a necessary and sufficient condition for the stability of the closed loop system related to the behavior of the open loop transfer function $F(s)|_{s=j\omega}$.

Robust Stability

- ▲ Due to *model uncertainties* (uncertain parameters, model simplification, linearization), it is usually required a controller assuring the asymptotic stability of the C.L. system with a certain 'safety margin'.
- This concept is called *robust stability* of the closed loop system.
- ▲ The robust stability of the closed loop system depends on the class and the range of uncertainties.
- The *stability margins* (gain and phase margins) relate the robust stability of the closed loop system to the behavior of the open loop transfer function $F(s)|_{s=j\omega}$

Closed loop tracking performances

- ▲ The performance of the closed loop system are evaluated in terms of
 - ♦ Tracking of the reference input
 - *♦* Rejection of the disturbs
 - *♦* Insensibility to the noise



- When the stability of the C.L. system is guaranteed, the responses of the system can be divided in a transient and a steady-state parts.
- The *steady-state performance* cares about the steady-state behavior of the closed loop system while the *transient performance* cares about the tracking of the reference signal during the transient phase

Steady-state performance

The steady-state performance depends on the class of input signals R(s), D(s), N(s) and the type of transfer function F(s)

Tracking of the reference input R(s)

- ♦ Null or bounded steady-state error to *polynomial inputs* (step, ramp,...)
- ♦ Null or bounded error to *sinusoidal inputs* at fixed frequency

\land Rejection of the disturbs D(s)

- ♦ Null or bounded steady-state error to *polynomial inputs*
- ♦ Bounded error to *multi-frequency sinusoidal inputs*

\land Insensibility to the noise N(s)

♦ Bounded error to *multi-frequency sinusoidal inputs*

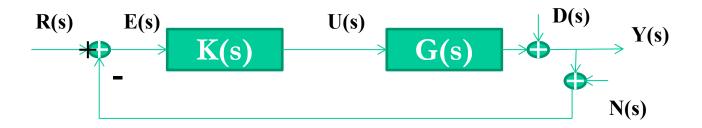
Due to the superposition principle, the three requirements are treated separately

Transient performance

- The *transient performance* are usually expressed in terms of tracking properties of the reference signal R(s).
- \land R(s) is usually assumed as a polynomial signal of order 0 (step)
- ▲ The transient performance can be classified in
 - * Dynamic precision performance (overshoot, oscillation period ...)
 - * Time response performance (rise time, peak time, settling time...)
- The rejection of the disturbs is usually not included among the transient performance because the transfer functions $R(s) \to Y(s)$ and $D(s) \to Y(s)$ have the same poles (excluding poles-zeros cancellation).

Closed loop functions

- From the previous analysis, it turns out that the closed loop performance depends on the relations between the input and outputs on the systems
- The closed loop system has three inputs R(s), D(s), N(s) and three outputs E(s), U(s), Y(s).



△ The dynamic relations between inputs and outputs of the systems are expressed by 9 transfer functions.

Closed loop functions

▲ The 9 transfer functions connecting inputs and outputs depends by three main functions

$$\begin{pmatrix} Y(s) \\ E(s) \\ U(s) \end{pmatrix} = \begin{pmatrix} \mathbf{T}(s) & \mathbf{S}(s) & * \\ * & * & * \\ \mathbf{Q}(s) & * & * \end{pmatrix} \begin{pmatrix} R(s) \\ D(s) \\ N(s) \end{pmatrix}$$

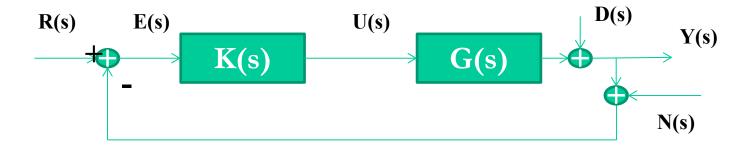
$$*$$
 $T(s) = \frac{G(s)K(s)}{1+G(s)K(s)}$ COMPLEMENTARY SENSITIVITY FUNCTION

$$\Rightarrow$$
 S(s) = $\frac{1}{1+G(s)K(s)}$ SENSITIVITY FUNCTION

$$*$$
 $Q(s) = \frac{K(s)}{1+G(s)K(s)}$ CONTROL SENSITIVITY FUNCTION

Closed loop functions

 \wedge The nine input-output relations can be written as functions of T(s), S(s), Q(s)



$$\begin{pmatrix} Y(s) \\ E(s) \\ U(s) \end{pmatrix} = \begin{pmatrix} \mathbf{T}(s) & \mathbf{S}(s) & -\mathbf{T}(s) \\ \mathbf{S}(s) & -\mathbf{S}(s) & -\mathbf{S}(s) \\ \mathbf{Q}(s) & -\mathbf{Q}(s) & -\mathbf{Q}(s) \end{pmatrix} \begin{pmatrix} R(s) \\ D(s) \\ N(s) \end{pmatrix}$$

Ideal control performance

- A The performance of the closed loop system have been classified in
 - \Rightarrow Tracking of the reference input \rightarrow T(s) = 1
 - \Rightarrow Rejection of the disturbs $\rightarrow S(s) = 0$

▲ This is in accordance with the fact that

$$T(s) + S(s) = \frac{G(s)K(s)}{1 + G(s)K(s)} + \frac{1}{1 + G(s)K(s)} = 1$$

Ideal control performance

A However this choice has two main drawbacks

1.
$$Q(s) = T(s)G^{-1}(s) = G^{-1}(s)$$

If the plant is strictly proper, Q(s) is improper and it causes a very high or infinity request of the control input for $t \to 0$ (initial value theorem)

2.
$$Y(s) = T(s)R(s) + S(s)D(s) - T(s)N(s)$$
,

The noise is not filtered by the system

Real control performance

- ▲ To overcome these problems the control theory takes advantage to the fact that the input signals have usually different intervals of frequency
 - **♦** Reference and disturbs at low frequencies
 - *♦* Noise at high frequencies
- ▲ So, a rule of thumb is to choose
 - T(s) = 1 and S(s) = 0 at low frequencies
 - T(s) = 0 at high frequencies
- ▲ In this way also the problem related to the input signal is reduced.