Exercises

SC2_05 - Affine Spaces and Subspaces.

1. Check which pairs of the following affine subspaces are mutually parallel. Display with MATLAB the subspaces and their direction spaces.

$$
\begin{aligned}
& \text { In } \mathbf{R}^{2}: \\
& \quad \Sigma_{1}: x-2 y+1=0 \\
& \Sigma_{2}: x-2 y+3=0 \\
& \Sigma_{3}: 2 x+y+1=0 \\
& \Sigma_{4}: x-y+1=0
\end{aligned}
$$

$$
\text { In } \mathbf{R}^{3}:
$$

$$
\begin{aligned}
& \Sigma_{1}: \mathrm{P}=\left(\begin{array}{lll}
2 & 1 & 2
\end{array}\right)+\rho\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
& \Sigma_{2}: x-y=0 \\
& \Sigma_{3}: \mathrm{P}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)+\rho\left(\begin{array}{ll}
1 & -1
\end{array}\right) \\
& \Sigma_{4}: x-y+z+1=0
\end{aligned}
$$

2. In the affine space \mathbf{R}^{3}, let r_{1} be the line passing through points $\mathbf{A}(2,-4,-1)$ and $\mathbf{B}(-1,-1,-1)$, and let r_{2} be the line whose parametric equations are:

$$
r_{2}:\left\{\begin{array}{l}
x=2+s \\
y=-2-s \\
z=1
\end{array}\right.
$$

check if the two lines are coplanar*, and find the plane π that contains them.

* Two lines are coplanar if they lie on the same plane, i.e. if they intersect or are parallel.

3. Find the vector parametric equation of the line r passing through point $\mathbf{Q}(2,1,3)$ and orthogonal to the plane π of the previous question.
4. Given the two lines r_{1} and r_{2} :

$$
\begin{aligned}
& r_{1}:\left\{\begin{array}{l}
x=1+3 t \\
y=-t \\
z=1+3 t
\end{array}\right. \\
& r_{2}:\left\{\begin{array}{l}
x=s \\
y=2 \\
z=s
\end{array}\right.
\end{aligned}
$$

find the cartesian equation of the affine plane π containing them.
5. Determine whether the line r and the plane π intersect or are parallel, where:

$$
\begin{aligned}
& r:\left\{\begin{array}{l}
x-1=0 \\
z=0
\end{array}\right. \\
& \pi: \quad x+y-z=0
\end{aligned}
$$

6. Given the following points in \mathbf{R}^{3}, check if they are affinely independent:
$6.1 \quad \mathbf{A}_{\mathbf{0}}(1,1,1), \mathbf{A}_{1}(2,1,1), \mathbf{A}_{2}(1,1,4), \mathbf{A}_{\mathbf{3}}(3,0,1)$.
$6.2 \mathbf{B}_{0}(1,-2,0), \mathbf{B}_{1}(1,-1,0), \mathbf{B}_{2}(4,-5,0), \mathbf{B}_{3}(1,0,-1)$.
