

L. Magistrale in IA (ML&BD)

Scientific Computing (part 2 – 6 credits)

prof. Mariarosaria Rizzardi

Centro Direzionale di Napoli – Bldg. C4

<u>room</u>: n. 423 – North Side, 4th floor

phone: 081 547 6545

email: mariarosaria.rizzardi@uniparthenope.it

Contents

- > Affine Spaces and subspaces.
- > Related properties.
- > Parallelism between affine subspaces.
- Intersection between affine subspaces.
- Affinely independent points and affine reference systems of subspaces.

Affine Spaces

From a geometrical point of view, curves and surfaces are usually considered as sets of "points" with some special properties. Typically, one is interested in geometric properties, invariant under certain transformations: for example, translations, rotations, projections, etc.

Modeling the space of points as a Linear Space is not very satisfactory, mainly because the point corresponding to the zero vector, called the **origin**, plays a special role, when there is really no reason to have a privileged origin.

An Affine Space is a geometric structure that makes possible to deal with points, curves, surfaces, etc., independently of any specific choice of a coordinate system (no preferential origin).

Definition of Affine Spaces

A structure $\langle \Sigma, V, \varphi \rangle$ is said an **Affine Space** Σ , if:

- Σ (geometric space) is a non-empty set of points P;
- \triangleright V (direction space) is a Linear Space on the field K (\mathbb{R} or \mathbb{C});
- ϕ (difference function) ϕ : $(P,Q) \in \Sigma \times \Sigma \longrightarrow \phi(P,Q) = \vec{v} \in V$ is a mapping usually denoted as

$$\varphi(P,Q) = Q - P = PQ = \overrightarrow{v} \qquad Q = P + \underline{v}$$
and such that:

or translation vector)

(1)
$$\forall P \in \Sigma, \forall v \in V \quad \exists ! Q \in \Sigma : \varphi(P,Q) = v$$

(2)
$$\forall P, Q, R \in \Sigma$$
 $\varphi(P,Q) + \varphi(Q,R) = \varphi(P,R)$

(Head-to-Tail Axiom)

Intuitive picture of an Affine Space $\langle \Sigma, V, \varphi \rangle$ u, v, w: vectors A, B, C: points B=A+u \boldsymbol{u} \boldsymbol{w} \boldsymbol{w} C=A+w

Examples of Affine Spaces

- \square The set of points on a line of \mathbb{R}^n , even if it does not pass through the origin.
- \square The set of points on a plane of \mathbb{R}^n , even if it does not pass through the origin.
- The set of solutions of a non-homogeneous and compatible linear system Ax=b.

Linear Spaces contain the so called free vectors.

Affine Spaces introduce the "sum between a point and a vector":

$$\varphi(P,Q) = Q - P = \overrightarrow{PQ} = \overrightarrow{v} \qquad \qquad Q = P + \varphi(P,Q) = P + \overrightarrow{v}$$

They contain the so called Euclidean (or geometric) vectors, that connect an initial point P to an end point Q.

Properties

Chosen a point $O \in \Sigma$, and defined $\forall P \in \Sigma$, $\varphi(O, P) = \overrightarrow{OP}$, then

- $\triangleright \forall P \in \Sigma, \quad \varphi(P,P) = \vec{0}$
- $ightharpoonup orall P, Q \in \Sigma$, $\varphi(P,Q) + \varphi(Q,P) = \vec{0}$ so that we set $\varphi(Q,P) = -\varphi(P,Q)$
- Each Linear Space V can be equipped with an Affine Space structure $\langle V, V, \varphi \rangle$ [by picking an origin O, and by defining $a = \varphi(O, A)$ and $\varphi(A, B) = b a$, $\forall a, b \in V$, so that $V = \{A : A = O + \varphi(O, A) = O + a$, $\forall a \in V\}$]
- Each Affine Space Σ can be equipped with a Linear Space structure [by defining the vectors of the Linear Space as $\alpha = \varphi(\mathbf{O}, \mathbf{A}) \ \forall \mathbf{A} \in \Sigma$, where \mathbf{O} is the origin]

An **Affine Space** Σ , whose direction space V is a Normed Linear Space is said an **Euclidean Space**.

The dimension of an Affine Space $\langle \Sigma, V, \varphi \rangle$ is defined as $\dim \Sigma = \dim V$

In order to give a reference system to an Affine Space [affine reference system $\mathcal{R}(\mathbf{O}, \mathbf{B})$], you need:

- \succ to establish a point $\mathbf{O} \in \Sigma$ (the origin of the reference \mathcal{R}).
- \triangleright to choose a basis B = { \underline{b}_1 , \underline{b}_2 ,..., \underline{b}_n } for V.

In the $\mathcal{P}(O,B)$ reference system, the affine coordinates $(p_1,p_2,...,p_n)$ of a point P are defined by the components of the vector $\phi(O,P)$ w.r.t. the selected basis B and origin O.

Components of the vector between two points are given by the difference between point coordinates.

Proof: if
$$V = \text{span}\{B\} = \text{span}\{\underline{b}_1, \underline{b}_2, ..., \underline{b}_n\}$$
 then $\forall P, Q \in \Sigma$

$$Q - P = \varphi(P,Q) = \varphi(P,Q) + \varphi(Q,Q) = \varphi(Q,Q) + \varphi(P,Q) = \varphi(Q,Q) + \varphi(Q,Q) + \varphi(Q,Q) = \varphi(Q,Q) + \varphi(Q,Q) = \varphi(Q,Q) + \varphi(Q,Q) = \varphi(Q,Q) + \varphi(Q,Q) + \varphi(Q,Q) + \varphi(Q,Q) + \varphi(Q,Q) = \varphi(Q,Q) + \varphi(Q,Q) +$$

A non-empty subset $\Sigma' \subseteq \Sigma$ is said to be an **Affine Subspace** of $\langle \Sigma, V, \varphi \rangle$ if there exists V', a linear subspace of V, such that the restriction of φ to Σ' admits V' as its direction space.

Particular affine subspaces of \mathbb{R}^n ($\Sigma = \mathbb{R}^n$, $V = \mathbb{R}^n$)

The only linear subspace of $V = \mathbb{R}^n$ with dim=0 is $\{0\}$: therefore all the points of $\Sigma = \mathbb{R}^n$ are the only affine subspaces with dim=0.

The lines in $\Sigma = \mathbb{R}^n$ are the only affine subspaces with dim=1.

Indeed, given $\underline{\mathbf{v}} \in V' : V'' = \operatorname{span}\{\underline{\mathbf{v}}\} = \lambda \underline{\mathbf{v}} \text{ (dim } V'' = 1)$, a line is described by parametric eq. $\longrightarrow \Sigma' = \{ \mathbf{P} \in \Sigma : \mathbf{P} = \mathbf{P}_0 + \lambda \mathbf{v} : \lambda \in \mathbb{R} \}$

(Σ' is said as an affine subspace passing through P_0 and parallel to V')

The planes in $\Sigma = \mathbb{R}^n$ are the only affine subspaces with dim=2.

For example, $\Sigma' \subseteq \mathbb{R}^3$ is a line; $\Sigma' = \mathbb{Q}_1 + V' = \mathbb{Q}_2 + V'$, parallel to $V' = \operatorname{span}\{\underline{\mathbf{v}}\}$

For example, $\Sigma'' \subseteq \mathbb{R}^3$ is a plane : $\Sigma'' \equiv \mathbb{P}_0 + V''$, parallel to $V'' = \operatorname{span}\{\underline{v},\underline{w}\}$

parametric eq. $\longrightarrow \Sigma'' = \{ \mathbf{P} \in \Sigma : \mathbf{P} = \mathbf{P}_0 + \lambda \underline{\mathbf{v}} + \mu \underline{\mathbf{w}} : \lambda, \mu \in \mathbb{R} \}$

Examples of real Affine Subspaces

The set of points of \mathbb{R}^3 on a line Σ' , even if it does not pass through the origin:

$$\Sigma' = \{ \mathbf{P} \in \Sigma = \mathbb{R}^3 : \mathbf{P} = \mathbf{P}_0 + \lambda \underline{\mathbf{u}}, \lambda \in \mathbb{R}, \underline{\mathbf{u}} \in V = \mathbb{R}^3 \}$$
(parametric eq.)

Examples of real Affine Subspaces

The set of points of \mathbb{R}^3 on a plane Σ' , even if it does not pass through the origin:

$$\Sigma' = \{ \mathbf{P} \in \Sigma = \mathbb{R}^3 : \mathbf{P} = \mathbf{P}_0 + \lambda \underline{\mathbf{u}} + \mu \underline{\mathbf{v}}, \ \lambda, \mu \in \mathbb{R}, \ \underline{\mathbf{u}}, \underline{\mathbf{v}} \in V = \mathbb{R}^3 \}$$


```
(parametric eq.)
V' = \operatorname{span}\{\underline{u}, \underline{v}\}
```

 \mathcal{V}' : direction space of Σ'

V' linear subspace

Parallelism and intersection in Affine Spaces

Two affine subspaces $\Sigma_1, \Sigma_2 \subseteq \Sigma$, with equal dimensions, are said to be parallel if they have the same direction space.

Example: parallel lines; parallel planes.

Two **affine subspaces** $\Sigma_1, \Sigma_2 \subseteq \Sigma$ with **different dimensions**, are said to be parallel if the direction space of the smaller one is contained in the direction space of the other.

Example: a line parallel to a plane.

The intersection $\Sigma_1 \cap \Sigma_2$ between two **affine subspaces** $\Sigma_1, \Sigma_2 \subseteq \Sigma$ is the set of points in Σ that belong to both of them. These points must satisfy both the parametric equations of Σ_1 and of Σ_2 .

Example: intersection between lines, between planes, between a line and a plane.

Exercise

Verify which among the following affine subspaces are mutually parallel. Display with MATLAB the subspaces and their direction space.

In \mathbb{R}^2

$$\Sigma_1$$
: x - 2*y + 1 = 0

$$\Sigma_2$$
: x - 2*y + 3 = 0

$$\Sigma_3$$
: 2*x + y + 1 = 0

$$\Sigma_{4}$$
: x - y + 1 = 0

In \mathbb{R}^3

$$\Sigma_1$$
: P = [2;1;2] + ρ [0;0;1]

$$\Sigma_2$$
: $x-y=0$

$$\Sigma_3$$
: P = [1;0;0] + ρ [1;-1;0]

$$\Sigma_{4}$$
: x - y + z + 1 = 0

Laboratory

Find the intersection between the two affine subspaces of \mathbb{R}^3 :

$$\pi$$
: $x+z=3$, r : $(x,y,z)^T = (1,1,1)^T + \lambda(0,1,-1)^T$

Two solution algorithms:

- 1. from cartesian eq. to parametric eq.
- 2. From parametric eq. to cartesian eq.

1. from cartesian to parametric eq.

The *r* line is already given by its parametric equation:

$$r: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad \alpha \in \mathbb{R}$$

The plane is given by its cartesian eq.: $\pi : x+z = 3$. Choosing y and z as free parameters, we are able to obtain its parametric eq.:

$$\pi \begin{cases} y = \lambda & \mu = 0 \\ z = \mu \\ x = 3 - \mu \end{cases} \quad y = 0 \\ x = 3 \quad \text{point on the plane} \quad x + z = 0 \\ \text{direction space of the plane} \quad B = \text{null([1;0;1]')} \\ \text{direction space of the plane} \quad \pi : \begin{cases} y = \lambda \\ y = 0 \\ 1 \\ 0 \end{cases} \quad \pi : \begin{cases} y = \lambda \\ y = 0 \\ 1 \\ 0 \end{cases} \quad \lambda, \mu \in \mathbb{R} \end{cases}$$

To find $\pi \cap r$, we have to solve the linear system obtained by forcing the points, of coordinates (x, y, z), to lie both on the plane and on the line:

$$\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
 reordering
$$\alpha \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$
 system

$$\begin{pmatrix} 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

A=[0 0 -1;-1 1 0; 1 0 1]; b=[-2;1;1];
param=A\b;
sol1=[1,1,1]' + param(1)*[0,1,-1]'; % ∈r
sol1'
intersection
point coordinates

2. from parametric to cartesian eq.

The plane $\pi : x+z = 3$ is already expressed by its cartesian equation.

About the r line, let us write its scalar parametric equations and remove the parameter α from the linear system:

$$r: \begin{cases} x = 1 \\ y = 1 + \alpha \\ z = 1 - \alpha \end{cases} \quad r: \begin{cases} x = 1 \\ \alpha = y \\ z = 1 - \alpha \end{cases}$$

$$r: \begin{cases} x = 1 \\ y + z = 2 \end{cases}$$

r as intersection of two planes

To find $\pi \cap r$, we solve the linear system:

$$\pi \cap r : \begin{cases} x = 1 \\ y + z = 2 \\ x + z = 3 \end{cases}$$

Affinely independent points

In an Affine Space, N+1 points $P_0, P_1, ..., P_N \in \Sigma$ are said to be affinely independent if, and only if, the N vectors

$$\vec{v}_1 = \overrightarrow{P_0P_1}, \ \vec{v}_2 = \overrightarrow{P_0P_2}, \ ..., \ \vec{v}_N = \overrightarrow{P_0P_N} \in V$$

are linearly independent.

 \mathbf{V} : direction space of Σ

The points P_0 , P_1 , P_2 are affinely independent

Affinely independent points

If the N+1 points $P_0, P_1, \ldots, P_N \in \Sigma$ are affinely independent in the Affine Space Σ , then we can choose the following N vectors

$$\vec{v}_1 = \overrightarrow{P_0P_1}, \ \vec{v}_2 = \overrightarrow{P_0P_2}, \ \dots, \ \vec{v}_N = \overrightarrow{P_0P_N} \in V$$
 direction space of Σ

as a basis B for V: in this way we introduce a new affine reference system $\mathcal{R}(O, B)$, where P_0 is the origin of the new reference \mathcal{R} .

Of course we can choose any of the N+1 points as the origin (changing the basis accordingly).

Example

The standard affine reference system of $\Sigma = \mathbb{R}^n$ consists of points:

$$P_0 = (0,0,...,0), P_1 = (1,0,...,0), P_2 = (0,1,...,0), ..., P_N = (0,0,...,1).$$

any point coordinates univocally identified

Affine reference system

Example 1

A new affine reference system of \mathbb{R}^2 could consist of the following points:

$$P_0 = (0,1), P_1 = (2,3), P_2 = (2,1).$$

What are the **affine coordinates** of a point Q w.r.t. the new affine reference system, if we know that its coordinates w.r.t. the **standard affine** reference system were (5,-1)?

$$(5,-1) \neq Q = Q + \varphi(Q,Q) = P_0 + \alpha_1(P_1 - P_0) + \alpha_2(P_2 - P_0)$$

$$(5,-1) = \mathbf{Q} = (0,1) + \alpha_1[(2,3) - (0,1)] + \alpha_2[(2,1) - (0,1)]$$

$$(5,-1)^{\mathsf{T}} - (0,1)^{\mathsf{T}} = \alpha_1[(2,3) - (0,1)]^{\mathsf{T}} + \alpha_2[(2,1) - (0,1)]^{\mathsf{T}}$$

$$\begin{bmatrix} (P_1 - P_0)^{\mathsf{T}} & (P_2 - P_0)^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} Q - P_0 \end{bmatrix}^{\mathsf{T}}$$

This is a determined linear system because the points are affinely independent

Example I (contd.)

```
P0=[0 1]; P1=[2 3]; P2=[2 1];
v1=(P1-P0)'; v2=(P2-P0)'; A=[v1 v2];
rank(A)

ans =
2
3 affinely independent points
2
Q=[5 -1]; w=(Q-P0)'; alpha=A\w
alpha =
-1
3.5
```


Affine reference system

Example 2

A new affine reference system of \mathbb{R}^3 could consist of the following points:

$$P_0 = (1,1,1), P_1 = (2,1,1), P_2 = (1,2,1), P_3 = (2,1,2).$$

What are the **affine coordinates** of a point Q w.r.t. the new affine reference system, if we know that its coordinates w.r.t. the **standard affine** reference system were (5,-1,0)?

$$(5,-1,0) = Q = Q + \varphi(Q,Q) = P_0 + \alpha_1(P_1 - P_0) + \alpha_2(P_2 - P_0) + \alpha_3(P_3 - P_0)$$

$$(5,-1,0) = Q = (1,1,1) + \alpha_1[(2,1,1) - (1,1,1)] + \alpha_2[(1,2,1) - (1,1,1)] + \alpha_3[(2,1,2) - (1,1,1)]$$

$$(5,-1,0)^{\mathsf{T}} - (1,1,1)^{\mathsf{T}} = \alpha_1[(2,1,1) - (1,1,1)]^{\mathsf{T}} + \alpha_2[(1,2,1) - (1,1,1)]^{\mathsf{T}} + \alpha_3[(2,1,2) - (1,1,1)]^{\mathsf{T}}$$

$$\begin{bmatrix} (P_1 - P_0)^{\mathsf{T}} & (P_2 - P_0)^{\mathsf{T}} & (P_3 - P_0)^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} Q - P_0 \end{bmatrix}^{\mathsf{T}}$$

This is a determined linear system because the points are affinely independent

Affine reference system

Example 3

A new affine reference system of a plane π , considered as an affine subspace of \mathbb{R}^3 , could consist of the following points:

$$P_0 = (1,1,1), P_1 = (2,1,1), P_2 = (2,1,2).$$

What are the affine coordinates of a point *Q* (on the plane) w.r.t. the new affine reference system, if we know that its coordinates w.r.t. the standard affine reference system were (4,1,3)?

$$(4,1,3) \neq Q = Q + \varphi(Q,Q) = P_0 + \alpha_1(P_1 - P_0) + \alpha_2(P_2 - P_0)$$

$$(4,1,3) = Q = (1,1,1) + \alpha_1[(2,1,1) - (1,1,1)] + \alpha_2[(1,2,1) - (1,1,1)]$$

$$(4.1,3)^{\mathsf{T}} - (1,1,1)^{\mathsf{T}} = \alpha_1[(2,1,1) - (1,1,1)]^{\mathsf{T}} + \alpha_2[(1,2,1) - (1,1,1)]^{\mathsf{T}}$$

$$\begin{bmatrix} (P_1 - P_0)^{\mathsf{T}} & (P_2 - P_0)^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} Q - P_0 \end{bmatrix}^{\mathsf{T}}$$

This is a determined linear system because the points are affinely independent

5Cp2_05a.<mark>23</mark>

Affine Spaces

(prof. M. Rizzardi)