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Affine Spaces

From a geometrical point of view, curves and surfaces are usually
considered as sets of “points” with some special properties.
Typically, one is interested in geometric properties, invariant
under certain transformations: for example, translations,
rotations, projections, etc.

Modeling the space of peoints as a Linear Space is not very
satisfactory, mainly because the point corresponding to the zero
vector, called the origin, plays a special role, when there is really
no reason to have a privileged origin.

An Affine Space is a geometric structure that makes
possible to deal with points, curves, surfaces, etc,,
independently of any specific choice of a coordinate
system (no preferential origin).
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Definition of Affine Spaces

SCp2_05a.3

Astructure (X,V,@) is said an Affine Space 2,, if:

> 2 (geometric space) is a non-empty set of poin‘l's S

» V (direction space) is a Linear Space on the field K (R or C);

» ( (difference function) @ : (P,Q)eZxZ——@(P,0)=veV

is @ mapping usually denoted as

¢(P,0)=l0—Pl=P0=% —> Q=P+ v

(v: displacement vector
and such that: or translation vector)

Q=P+v
P (1) vPez,vvev 3Qex: ¢(P,Q)=v

P-{\\g (2) vP,O,Rex ¢(P.0)+9(Q,R)=9(P,R)

(Head-to-Tail Axiom)
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Intuitive picture of an Affine Space
(Z,V,0)
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A, B, C: points u, v, w: vectors
P Q(P,Q)
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Examples of Affine Spaces
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[ The set of points on a line of R", even if it does not pass
through the origin.

[ The set of points on a plane of R", even if it does not pass
through the origin.

J The set of solutions of a non-homogeneous and compatible

Affine Spaces

linear system Ax=Db.

Linear Spaces contain the so called free vectors.

Affine Spaces introduce the “sum between a point and a vector”:

¢(P,0)=0-P=P0=% <4mm) Q=P+9(P,Q)=P+7y
They contain the so called Euclidean (or geometric) vectors, that
connect an initial point P to an end point Q.
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Properties
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Chosen a point OeZ, and defined VP € Z, (p(O,P)=a5,, then
»VPce3, (p(P,P)=5

»VP,0 €7, ¢(P,0)+(Q,P)=0 so that we set ¢(Q,P)=—¢(P.Q)

» Each Linear Space YV can be equipped with an Affine Space
structure (V,V,¢) [by picking an origin O, and by defining a=¢(0,A) and
@(A,B)=b - a, Va,beV, so that
V={A:A=0+¢(0,A)=0 +a, VaeV}]

» Each Affine Space X can be equipped with a Linear Space

structure [by defining the vectors of the Linear Space as
a=¢(0,A) YAeZ, where O is the origin]
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An Affine Space X, whose direction space V'is a
Normed Linear Space is said an Euclidean Space.




» The dimension of an Affine Space (Z,V, o) is defined as
dimZ =dimV
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In order to give a reference system to an Affine Space
[affine reference system ZR(0O, B)], you need:

» to establish a point O <X (the origin of the reference R).
» to choose a basis B ={b,, b,,..., b} for V.

In the R(0O,B) reference system, the affine coordinates
(P1,P,..-,p,) Of @ point P are defined by the components of
the vector @(O,P) w.r.t. the selected basis B and origin O.

Affine Spaces

Components of the vector between two points are given by the
difference between point coordinates.
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Proof:. _if V=span{B}=span{b,, b,, .., b} then V P, QeZ olP.0)=—0(0.P) ==
Q- Pp(P,Q)=0(P,0) + 0(0,Q) = ¢(0,Q) + ¢(P,0) =
= ¢(0,Q) - ¢(O,P) =(q, — p,)b,*+ (9, — p,)b,*+ ..+ (q, — P. )b,




A non-empty subset X' is said to be an Affine Subspace

of (2, V,0) if there exists V', a linear subspace of V, such that the
restriction of ¢ to X' admits V as its dlrectlon space.
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Particular affine subspaces of R" (Z=R", Y=R")

The only linear subspace of V=R" with dim=0 is {0}: therefore all
the points of Z=R" are the only affine subspaces wnth dim=0.

The lines in Z=R" are the only affine subspaces with dim=1.

Indeed, given veV': V’=span{v} = AV (dimV”’=1), a line is described by
parametric eq. — ».'= {PEZ P = |P0 + )uV . XER}

(X' is said as an affme subspace passnng through P, and parallel to V)

” Q,
For example, 2’ C]R3 isaline : X'=Q+V’= Q,+V/ parallel to V= span{v} V\’\\\
O

A\
3!

Affine Spaces

The planes in Z=R" are the only affine subspaces with
dim=2,

parametric eq. — 2"={PeX : P=Py+ AV + pw : A,pneR}

For example, £"cR3is a plane : "= P, + V", parallel to V"= span{v,w}

!

(prof. M. Rizzardi)



Examples of

real Affine Subspaces

 The set of points of R? on a line ', even if it does not pass

through the origin:
>'={PeX=R’ :

2

e

P=P,+Au, AeR, ueV=R’>}

(parametric eq.)
V' = span{u}

" affine subspace ) i
V": direction space of %

V" linear subspace

origin of vectors in V=R>
origin of the affine reference system

syms a real
u=[3 -2 1]'; V=a*u;

1Pe=[1 1 1]'; S=PO+V;

fplot3(s(1),S(2),S(3),[-2 2], 'Color’','r',  'LineWidth',2)
hold on

fplot3(v(1),Vv(2),V(3),[-2 2], 'Color’','b’', 'LineWidth',2)
plot3(0,0,0, 'ok', 'MarkerFaceColor', 'k")
plot3(Po(1),P0(2),P0(3), 'om', 'MarkerFaceColor','m")
quiver3(0,0,0,u(1),u(2),u(3),1,'Color','c', 'LineWidth',3)
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Examples of real Affine Subspaces

O The set of points of R on a plane ¥, even if it does not
pass through the origin:

Y'={PeX=R’: P=P,+Au+pv, LneR, uveV=R?}

>, affine subspace

(parametric eq.)
V' = span{u,v}
V': direction space of X'
o

‘;v .
linear subspace

syms a b real

u=[3 -2 1]'; v=[1 0 2]'; V=[u v]*[a;b];

Po=[1 1 4]'; S=PO+V;

fmesh(Vv(1),Vv(2),V(3),[-2 2], 'EdgeColor', 'none’, ...
'FaceColor', 'b', "FaceAlpha',0.5)

hold on

quiver3(0,0,0,u(1),u(2),u(3),1,'Color','c', 'LineWidth',3)

quiver3(o0,0,0,v(1),v(2),v(3),1,'Color','g"', 'LineWidth',3)

fmesh(S(1),S(2),S(3),[-2 2], 'EdgeColor', 'none’, ...
'FaceColor', 'r', "FaceAlpha',0.5)

plot3(Po(1),P0(2),P0(3), 'om', 'MarkerFaceColor','m")

plot3(0,0,0, 'ok', 'MarkerFaceColor', 'k")
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Parallelism and intersection in Affine Spaces

Two affine subspaces 2,2,c2, with equal dimensions,
are said to be parallel if they have the same direction space.

Example: parallel lines; parallel planes.

Two affine subspaces %,,2,c¥ with different dimen-

sions, are said to be parallel if the direction space of the
smaller one is contained in the direction space of the other.

Example: a line parallel to a plane.

The intersection ~,N%, between two affine subspaces %,,2,c¥
is the set of points in 2 that belong to both of them. These points
must satisfy both the parametric equations of 2, and of %,.

Example: intersection between lines, between planes, between
a line and a plane.
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Exercise

Verify which among the following affine subspaces are mutually
parallel. Display with MATLAB the subspaces and their direction
space.

In R?

: x-2%+1=0

: x-2%+3=0

1 2¥x+y+1=0

: X-y+1=0

-

MMMM
w N

5

In R3

: P=[2;1;2] + p[0;0;1]
: x=y=0

: P=1[1;0;0] + p[1;-1;0]
: X-y+z+1=0

—-

MMMM
w N

5
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Laboratory :
|
Find the intersection between the two affine subspaces of R3: 8
T X+z2=3, r (xy2)"'=(1,1,1)"+2A(0,1,-1)7
We draw the subspaces: numerically
[x,y]=meshgrid(linspace(-3,3,55)); |
z=3-x; h=mesh(x,y,z); % draw the plane | 9
axis equal; box on; hold on S
syms a real &
r=[1,1,1]" + a*[0,1,-1]"; < f_’_:
h=fplot3(r(1),r(2),r(3),[-5 21); <
set(h, 'Color', 'k', 'LineWidth',2)
xlabel('x"'); ylabel('y'); zlabel('z')
symbolically =
Two solution algorithms: g
1. from cartesian eq. to parametric eq. &

2. from parametric eq. to cartesian eq.




1. from cartesian to parametric eq.

The rline is already given by its parametric equation:

X 1 0
r:ilyl=(1|+a|l 1|, a€cR
Z 1 —1

The plane is given by its cartesian eq.: m: x+z = 3. Choosing y and z as free para-
meters, we are able to obtain its parametric eq.:

_ _ v Y

Y }tg y=0 x*+2=0 [ ull([1;051]") X 3 0 —1

- M= =0 direction || B £

-1 =223 swaceotthel [0 [E770) | q:ly =f0fe A1l O AucE
H point on the plane E o 7L 4 0 0 1

To find T r, we have to solve the linear system obtained by forcing the points,
of coordinates (x, vy, z), to lie both on the plane and on the line:

3700 (1) (x) (1) (o7 0 (0] (-1) (1

: 3
reordering linear
O+ 1+p| O)=ly|=|li+a| 1) L= a|=1+a1+n 0)=\11=|0F o
0 0 1 Z 1 —1 1 0 1 1] (0 Y
\ /
A=[0 @ -1;-1 1 0; 1 0 1]; b=[-2;1;1];
0 0 —1)(a) (1) (3) (-2 param=A\b;
- ] £ - LI 00
1 1 ol|lal=|1]-]0|= 23117[1’1’1] + param(1) [6.’1’ ] e
Lo 1 il ) intersection
u g @ 2 point coordinates
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2. from parametric to cartesian eq.

SCp2_05a.15

The plane it : x+z = 3 is already expressed by its cartesian equation.

About the r line, let us write its scalar parametric equations and remove the
parameter o from the linear system:

(x=1 (x=1
I"Z<y:1—|—OL r:<a:y—1 e I as inrersecrion
y+z=2 of two planes
z=1—-a z=1—a "
; ; S
a
(Vp)
To find T r, we solve the linear system: E
<
x=1 }
r.
TOr:iy+z=2

X+z=3 = T
(a4
A=[1 0 0; 06 11; 10 1]; b=[1;2;3]; s:
SELEE intersection 5
1 9 2 point coordinates &




Affinely independent points :
. . . I
In an Affine Space, N+1 points Py, P, ..., PyeZ are said | &
to be affinely independent if, and only if, the N vectors
=PP,%,= PP, ..., Uy=PP, €V
are Iinearly independent. V: direction space of =
3 @
P=[0 1 -1; 2 3 2] P 9
= 2.5 Pz |)0 = (%_
’ o ® £
1.5 ‘&—
T o < | N32 vectors :
rank(v)
ans = , linearly independent ) v, b :'g
v-P(:,zzend) = P(:,l) 15 11< -0.5 0 0.5 1 15 g
v — "1 s
repmat(P(:,1),1,size(P,2)-1) 1 0 “
= 0 the repmat () function is no longer required g_
2

The points P, P,, P, are affinely independent




Affinely independent points

If the N+1 points P,P,,...,PyeZ are affinely independent in
the Affine Space X, then we can choose the following N
vectors

SCp2_05a.17

v, = EE, v, = ?OE? ceey Uy = m cVY V: direction space of &
as a basis B for V: in this way we introduce a new affine
reference system (0, B), where P, is the origin of the new
reference R.

Of course we can choose any of the N+1 points as the origin
(changing the basis accordingly).

BErample

The standard affine reference system of Z=R” consists of points:
P,=(0,0....,0), P,=(1,0,...,0), P,=(0,1,...,0), ..., P,=(0,0,...,1).

N
any point coordinates univocally identified

O=(a), Ogsees Q) = K) + o, Py + oy + - + oy

Affine Spaces
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Affine reference system ;
I
Example 1 ?
A new affine reference system of R? could consist of the following points:
PO:(O,].), P1:(2,3), P2:(2,1)

What are the affine coordinates of a point @ w.rt. the new affine
reference system, if we know that its coordinates w.r.t. the standard affine | 4
reference system were (5,-1)? U?)L
(5,-1)=Q = 0+9(0,Q) = Py+a, (P~ Py)+0,(P,— Py) £

(59_1) = Q = (0>1)+a1[(2’3)_(091)]+a2[(291)_(0>1)]

(5,=1)"=(0,1)" = 0 {(2,3)=(0,1)] "+, [(2,1)-(0, )] H
T T]| & T =
p=0 = [B-B) @B-8)|}]-l-n :
2 &

This is a determined linear system because the points are affinely independent




Example 1 (contd.)
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Pe=[0 1]; P1=[2 3]; P2=[2 1];

v1=(P1-Pé)'; v2=(Pi-P0)'; A=Ev1 v2]; check

rank (A) basis of the diredtion space A*alpha

e _; 3 affinely independent points ns =

Q=[5 -1];] w=(Q-P@)'; alpha=A\w >

alpha = PO' + A*alpha
-1 ans =
3.5 :

Affine Spaces

r: P=Py+Av,

parametric eq.
r:P=Py+Av,
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Affine reference system

Example 2

A new affine reference system of R’ could consist of the following points:
P=(1,1,1), P,=(2,1,1), P,=(1,2,1), P,=(2,1,2).

What are the affine coordinates of a point @ w.rt. the new affine

reference system, if we know that its coordinates w.r.t. the standard affine
reference system were (5,-1,0)?

(5,-1,0)=0=0+¢(0,Q)= Py + a,(P\= Py) + oy (P,— Py) + a3( Py~ Py)
(5-1,0) = O = (1,1,1)4e,[(2,1,1)=(1,1,D)]+e[(1.2,)=(1,1,)+es](2,1,2)=(1,1,1)]

(5,-1,0)" = (L, 1,)T=a,[(2,1,1)=(1,1,1)]™+a,[(1,2,1)=(1,1,1)]"+e5[(2,1,2)—(1,1,1)]T
fai\
=0 = |(A-R) (B-R) (R-R)|e|=[0-A]
\0'31

This is a determined linear system because the points are affinely independent
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Example 2 (contd.)

SCp2_05a.21

Pe=[1 1 1]; P1=[2 1 1]; P2=[1 2 1]; P3=[2 1 2];
vl=(P1-PO)"'; v2=(P2-PO)'; v3=(P3-PO)"';
A=[\(/1 v2 \)/3]; bas?s of ’rhe)dir'ec’rior(t space) check
rank(A) A*alpha
ans = . . . ans =
3 4 affinely independent points 4
—)|Q=[5 -1 O]I; w=(Q-PO)"'; alpha=A\w )
alpha = -1
> PO' + A*alpha
"2 ans = “
4 )
5 S
-1 a
Q
o £
<
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Affine reference system 3
C>I

A new affine reference system of a plane &, considered as an affine

subspace of R?, could consist of the following points:
P=(1,1,1), P,=(2,1,1), P,=(2,1,2).

What are the affine coordinates of a point ©Q (on the plane) w.r.t. the new
affine reference system, if we know that its coordinates w.r.t. the standard | ¢
affine reference system were (4,1,3)? U?)L
(4,1.3)=Q = 0+9(0,Q) = Py + o, (P~ Py) + ay(P,— P,) £

(4,1,3) =0 =(1,1,1) + o, [(2,1,1)=(1,1,1)] + a,[(1,2,1)—(1,1,1)]

(4,1,3)"= (1,1,1)T = o [(2,1,1)=(1,1,1)]T+ 0, [(1,2,1)—(1,1,1)]T 35
T T % T =
P=0 > |(R-R) (B-R) ][a ]=[Q—Po] :
2 &

This is a determined linear system because the points are affinely independent




Example 3 (contd.)
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check
Pe=[1 1 1]; P1=[2 1 1]; P2=[2 1 2];
vl=(P1-PO)'; v2=(P2-PO)'; A=[vl v2]; A*alpha
rank(A) basis of the direction space ans = ;
™ 3 affinely independent points 0
- 5l w=(Q-P9)"'; alpha=A 2
_Hglp[r:]]; adi]+=(QPO)s alphasiie PO0' + A*alpha
> affine coordinates of Q on the plane ans =
1
3

Affine Spaces

in front of the plane
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