Exercises

SC2_04 – Particular Linear Subspaces and their properties.

- 1. Given in \mathbb{R}^3 the subspaces $V_1 = \text{span}\{(1,2,0)^{\mathsf{T}}\}\$ and $V_2 = \text{span}\{(2,3,0)^{\mathsf{T}}\}\$, find a basis and the dimension of the following subspaces, and check the *Grassmann Formula*:
 - 1.1 The sum subspace $W = V_1 + V_2$.
 - 1.2 Some complementary subspaces of W in \mathbb{R}^3 .
 - 1.3 The orthogonal complement of W in \mathbf{R}^3 .
- 2. What is a formula that implies the inequality: $rank(\mathbf{A}+\mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$? Under which hypothesis does inequality become equality?
- 3. Find two different complementary subspaces and the orthogonal complement of the following linear subspaces W^* of \mathbb{R}^n (if you are using the *Symbolic Math Toolbox* to solve the problem, you have to give a value to *n*: for example, *n*=5, or *n*=3 if you want to draw the subspaces):
 - 3.1 $W = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} = (x_1, x_2, \dots, x_j, \dots, x_n)^{\mathsf{T}} \land x_j = 0 \text{ for a certain } j \}$
 - 3.2 $W = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} = (x_1, x_2, ..., x_n)^{\mathsf{T}} \land x_1 = x_2 = ... = x_n \}$
 - 3.3 $W = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} = (x_1, x_2, ..., x_n)^{\mathsf{T}} \land \sum_{k=1,...,n} x_k = 0 \}$

* already seen in Exercises_02.pdf.

- 4. Find and display the intersection between the following subspaces of \mathbf{R}^3 :
 - 4.1 The planes *xy* and *yz*.
 - 4.2 The line *r*=span{ $(1,1,1)^{\mathsf{T}}$ } and the plane π =span{ $(1,0,0)^{\mathsf{T}}, (0,1,1)^{\mathsf{T}}$ }.
 - 4.3 The plane orthogonal to $r_1 = \text{span}\{(1,1,0)^{\mathsf{T}}\}$ and the plane orthogonal to $r_2 = \text{span}\{(0,1,1)^{\mathsf{T}}\}$.
- 5. Find the intersection $W=U\cap V$, where U and V are the following subspaces:

$$U = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} = (x_1, x_2, \dots, x_j, \dots, x_n)^{\mathsf{T}} \land x_j = 0 \text{ for a certain } j \}$$
$$V = \{ \boldsymbol{x} \in \mathbf{R}^n : \boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}} \land \sum_{k=1,\dots,n} x_k = 0 \}$$

- 6. Write a function implementing the *Gram-Schmidt Orthonormalization Algorithm* (GSO) and apply it to vectors (1,2,0)^T, (8,1,-6)^T, (0,0,1)^T, then compare its output to the result returned by the orth() function. If V=span{(1,2,0)^T, (8,1,-6)^T, (0,0,1)^T}, is 𝔅(0)=V? What happens if the vectors are (1,2,0)^T, (8,1,-6)^T, (2,4,0)^T? If V=span{(1,2,0)^T, (8,1,-6)^T, (2,4,0)^T}, is 𝔅(0)=V still true?
- 7. Find an orthonormal basis in the subspace containing the real algebraic polynomials of degree at most 2:

$$W = \operatorname{span}\{p_1, p_2, p_3\}$$

where

$$p_1(x) = 2 + x + 4x^2$$
$$p_2(x) = 1 - x + 3x^2$$
$$p_3(x) = 3 + 2x + 5x^2$$

and the scalar product is defined by: $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$.

- 8. Write a MATLAB function that accepts a sequence of vectors on input, then by means of GSO Algorithm checks their linear independence and, in this case, computes the two systems of orthogonal and orthonormal vectors, $\{v_k\}$ and $\{u_k\}$ respectively. What would change in the code if the input vectors were complex instead of real?
- 9. Write both the symbolic version of the code, suitable for function vectors too, and the numerical version of the code, only applicable to vectors of real components.