
Automatic Control Systems – September 12, 2023

Student:_____ ID:_____

1. Given the LTI system defined by the transfer function G(s),

$$G(s)=\frac{s+20}{s^2+4s+5},$$

- a. calculate the analytic expression of the forced response to a step input of unitary amplitude (i.e., step response);
- b. draw the qualitative step response.
- 2. For the closed loop system shown in figure,

where the reference r and the disturbance d are step signals,

- a. devise K(s) in order to satisfy the following requirements:
 - i. $e_{\infty}=0;$
 - ii. overshoot $s \leq 20\%$;
 - iii. settling time $t_{s5\%} \le 1$ s;
- b. calculate the gain stability margin of the devised control system.

Time available: 2 hours