
Automatic Control Systems – October 11, 2023

Student:_____ ID:_____

1. Given the LTI system defined by the transfer function G(s),

$$G(s) = \frac{10(s+1)}{(s^2 + 7s + 12)},$$

- a. calculate the analytic expression of the forced response to a step input of unitary amplitude (i.e., step response);
- b. draw the qualitative step response.
- 2. For the closed loop system shown in figure,

- a. devise K(s) in order to satisfy the following requirements:
 - i. $e_{\infty r} \leq 10\%$ w.r.t. a reference step signal *r*;
 - ii. overshoot $s \leq 30\%$;
 - iii. settling time $t_{s5\%} \le 0.5$ s;
- b. calculate the gain stability margin of the devised control system.

Time available: 2 hours