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Real Bode diagrams 

ñ In the real Bode diagrams the magnitude and phase of a transfer function
𝑾(𝒔) with 𝒔 = 𝒋𝝎 are drawn accurately also the in two decades around the
break points of the binomial and trinomial terms.

ñ The real Bode diagrams are usually traced applying some corrections to the
asymptotic Bode diagrams

ñ The real Bode diagrams can be drawn in MATLAB using the command
‘bode’
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Real Bode diagrams: binomial term 
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Phase [deg]

Zero of multiplicity one  𝑾 𝒔 = 𝟏 + 𝒔𝝉

This result can be easily generalized to a generic binomial term

Asymp
Real
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Real Bode diagrams: trinomial term 
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Complex conjugate poles of multiplicity one  𝑾 𝒔 = 𝟏 + 𝟐𝜻𝐬
𝝎𝒏
+ 𝒔𝟐

𝝎𝒏𝟐

&𝟏

𝜔(

Peak module

𝑴𝒑 =
𝟏

𝟐𝜻 𝟏 − 𝟐𝜻𝟐

Peak frequency

𝝎𝒑 = 𝝎𝒏 𝟏 − 𝟐𝜻𝟐

This result can be easily generalized to a generic trinomial term

Asymp
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ñ Monomial terms of multiplicity 1. The slope is constant in 𝜔 ∈ [0 ∞[

ñ Binomial and trinomial terms of multiplicity 1. The slope changes on the break
point

ñ When the term has a multiplicity greater than one, the slopes should be
multiplied by the multiplicity.

Bode magnitude table

Indipendent from the sign of the real part

Real Zero +20 dB/decade

Real Pole -20 dB/decade

Comp. Conjug. zeros +40 dB/decade

Comp. Conjug. poles -40 dB/decade
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Zero in the origin +20 dB/decade

Pole  in the origin -20 dB/decade
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Bode phase table

ñ Constant and monomial terms of multiplicity 1. The slope is constant in
𝜔 ∈ [0 ∞[

ñ Binomial and trinomial terms of multiplicity 1. The slope changes one
decade before and after the breaking point.

ñ When the term has a multiplicity greater than one, the phase variation
should be multiplied by the multiplicity.
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Negative real part Positive real part

Real Zero +90° +45à -45 °/decade -90° -45à +45 °/decade

Real Pole -90° -45à +45 °/decade +90° +45à -45 °/decade

Comp. Conjug. zeros +180° +90à -90 °/decade -180° -90à +90 °/decade

Comp. Conjug. poles -180° -90à +90 °/decade +180° +90à -90 °/decade

K < 0 -180° per wÎ[0,¥)

Zero in the origin +90° per wÎ[0,¥)

Pole in the origin -90° per wÎ[0,¥)
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Examples

ñ Trace the real Bode diagrams of the functions
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Example 1
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Exmple 2
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Low-pass filter
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Magnitude [dB]
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High-pass filter
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Band-pass filter

12

Magnitude [dB]



13

Ø Any periodic function f(t) with period T,

𝑓 𝑡 = 𝑓 𝑡 + 𝑇 ,
can be written as 

where 𝜔+ =
,-
.
,

F0 is the average value of  f  over a single period.

.

.

The component with 𝜔+ is the fundemental armonic or 1st harmonic, that
with 𝑛𝜔+ is n-th harmonic.

Fourier analysis
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Using Fourier analysis:

Therefore, the square wave can be written

Example: square wave
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Example: approximation of a square wave
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𝜔+ = 2π rad/s
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Let us consider the system 
with transfer function:
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Magnitude frequency response of the system
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Magnitude of the first five Fourier coefficients of a square wave signal with T=2
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𝐺 𝑠 =
1

𝑠! + 𝑠 + 1
and assume we want to
compute the steady-state
response to the square
wave with period T=2𝜋.
• 𝑢 𝑡 = "

!
+ !

#
sin 𝑡

+
2
3𝜋 sin 3𝑡 +

+
2
5𝜋 sin 5𝑡 + ⋯

Example: steady state response to a square 
wave
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square wave output first harmonic approx.

The stead state response of
the system with transfer
function

𝐺 𝑠 =
1

𝑠! + 𝑠 + 1

is practically identical to the
response assuming just the
first two terms of the Fourier
expansion (the average value
plus the first harmonic)

Example: steady state response to a square 
wave


