L. Magistrale in IA (ML\&BD)

Scientific Computing (part 2 - 6 credits)

Centro Direzionale di Napoli - Bldg. C4 room: n. 423 - North Side, $4^{\text {th }}$ floor phone: 0815476545
email: mariarosaria.rizzardi@uniparthenope.it

Contents

 BGLISTUD> "Sum" and "direct sum" of two linear subspaces.
> "Complementary" subspace and "orthogonal complement" subspace of a given subspace.
> Grassmann Formula and other properties of linear subspaces.

Definitions (1 of 2)

Let \boldsymbol{S} be a Vector Space and $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$ are subspaces of \boldsymbol{S}.
(1) The subspace $\boldsymbol{U}=\boldsymbol{V}+\boldsymbol{W}$ is said to be the sum of \boldsymbol{V} and W if:
$\boldsymbol{V}+\boldsymbol{W}=\{\boldsymbol{s} \in \boldsymbol{S}: \boldsymbol{s}=\boldsymbol{v}+\boldsymbol{w}, \forall \boldsymbol{v} \in \boldsymbol{V} \wedge \forall \boldsymbol{w} \in \boldsymbol{W}\}$
(2)

The subspace $\boldsymbol{U}=\boldsymbol{V} \oplus \boldsymbol{W}$ is said to be the direct sum of V and W if:

$$
\boldsymbol{V} \oplus \boldsymbol{W}=\boldsymbol{V}+\boldsymbol{W} \wedge \boldsymbol{V} \cap \boldsymbol{W}=\{\underline{\boldsymbol{0}}\}
$$

They are subspaces of S

Definitions (2 of 2)

Let \boldsymbol{S} be a Vector Space and $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$ are subspaces of \boldsymbol{S}.
(3) V is a complementary subspace of W in S if:

$$
\boldsymbol{V} \quad: \quad \boldsymbol{V} \oplus \boldsymbol{W}=\boldsymbol{S}
$$

(4) $V=W^{\perp}$ is the orthogonal complement of \boldsymbol{W} in S if:

$$
\boldsymbol{W}^{\perp}=\{\boldsymbol{s} \in \boldsymbol{S}: \boldsymbol{s} \perp \boldsymbol{w}, \forall \boldsymbol{w} \in \boldsymbol{W}\}
$$

Example 1

In \mathbb{R}^{3}

$$
\boldsymbol{A}=\left(\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 2 & 2 & 0 \\
1 & -1 & 1 & 1
\end{array}\right)
$$

the Sum Subspace of V and W is:
$\boldsymbol{V}+\boldsymbol{W}=\mathscr{R}(\boldsymbol{A})$
Column Space of \boldsymbol{A}

$\boldsymbol{U} \cup V$ is not a subspace of S because, in general, $\forall u \in \boldsymbol{U}, \quad \forall \boldsymbol{v} \in \boldsymbol{V} \quad \boldsymbol{u}+\boldsymbol{v} \notin \boldsymbol{U} \cup \boldsymbol{V}$

Example

in \mathbb{R}^{2}

For each subspace in S, there are infinitely many complementary subspaces in the same space S.

Example 2

If $\boldsymbol{V}=\boldsymbol{x}$-axis, then

$$
\begin{aligned}
& \mathbb{R}^{2}=\boldsymbol{V} \oplus \boldsymbol{W} \text { where } \boldsymbol{W}=\boldsymbol{y} \text {-axis } \\
& \mathbb{R}^{2}=\boldsymbol{V} \oplus \boldsymbol{W} \text { where } \boldsymbol{W}=\left\{\boldsymbol{w}^{\boldsymbol{w}}: \boldsymbol{w}_{1}=\boldsymbol{w}_{2}\right\}
\end{aligned}
$$

Example 3

If $W \subset \mathbb{R}^{2}: W=\left\{w \in \mathbb{R}^{2}: w_{1}=w_{2}\right\}$ then its orthogonal complement $\boldsymbol{V}=W^{\perp}$ is

$$
\boldsymbol{V}=\boldsymbol{W}^{\perp}=\left\{\boldsymbol{v}: \boldsymbol{v}_{1}=-\boldsymbol{v}_{2}\right\}
$$

Properties (1/2)

$\boldsymbol{V}, \boldsymbol{W}$ are subspaces of a vector space \boldsymbol{S} :

$1 \boldsymbol{V}+\boldsymbol{W}$ and $\boldsymbol{V} \cap \boldsymbol{W}$ are linear subspaces.
2 Grassmann formula $\operatorname{dim}(V+W)+\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W$
$3 \quad \operatorname{dim}(V \oplus W)=\operatorname{dim} V+\operatorname{dim} W$
$4 \boldsymbol{S}=\boldsymbol{V} \oplus \boldsymbol{W} \Rightarrow \forall s \in \boldsymbol{S} \exists!v \in V, \exists!w \in \boldsymbol{W}: s=v+w$
$5 \boldsymbol{S}=\boldsymbol{V} \oplus \boldsymbol{W} \Rightarrow$ a basis of \boldsymbol{S} is given by the union of a basis of V and a basis of \boldsymbol{W}.

Properties (2/2)

6 The zero-vector is orthogonal to all the vectors in the space, and it is the only vector orthogonal to itself.

7 The orthogonal complement is a subspace.

8 The orthogonal complement of W is a complementary subspace of \boldsymbol{W}, that is $\boldsymbol{W} \oplus \boldsymbol{W}^{\perp}=\boldsymbol{S}$.

9 The orthogonal complement of W is unique.
$10\left(W^{\perp}\right)^{\perp}=W$.

Intersection of two subspaces

1. If \boldsymbol{S} is a Linear Space and $\boldsymbol{U}, \boldsymbol{V}$ are subspaces of \boldsymbol{S}, then $\boldsymbol{U} \cap \boldsymbol{V}$ is a subspace of \boldsymbol{S}.

Proof

We will apply to $\boldsymbol{U} \cap \boldsymbol{V}$ the Theorem that gives a necessary and sufficient condition for a subspace of a Linear Space:
$\boldsymbol{U} \cap \boldsymbol{V}$ must contain the linear combinations of all its vectors.
Thesis: $\forall x, y \in U \cap V \Rightarrow \alpha x+\beta y \in U \cap V$
The result immediately follows, because \boldsymbol{U} and \boldsymbol{V} are both subspaces.

$$
\begin{aligned}
& \forall x, y \in U \Rightarrow \alpha x+\beta y \in U \\
& \forall x, y \in V \Rightarrow \alpha x+\beta y \in V
\end{aligned}
$$

