Exercises

SC2_03 - Dot products and norms.

1. Given in \mathbf{R}^{3} the following bilinear forms with α as a parameter, establish which value of α makes the form to be a scalar product:

$$
\begin{aligned}
& \text { 1.1 } F(x, y)=\alpha x_{1} y_{1}+x_{1} y_{3}+\alpha x_{2} y_{2}+x_{2} y_{3}+x_{3} y_{1}+x_{3} y_{2}+\alpha x_{3} y_{3} \\
& \text { 1.2 } F(x, y)=(2-\alpha) x_{1} y_{3}+\alpha x_{2} y_{2}+(2-\alpha) x_{3} y_{1}+5 x_{3} y_{3}
\end{aligned}
$$

2. Verify that the following expressions are scalar products:

$$
\begin{array}{ll}
\text { 2.1 } F(x, y)=x^{\top} y=y^{\top} x=\langle x, y\rangle=\sum_{k=1}^{n} x_{k} y_{k}, \quad x, y \in \mathbb{R}^{n} & \left(\text { standard scalar product in } \mathbb{R}^{n}\right) \\
\text { 2.2 } F(x, y)=y^{H} x=\langle x, y\rangle=\sum_{k=1}^{n} x_{k} \bar{y}_{k}, \quad x, y \in \mathbb{C}^{n} & \left(\text { standard scalar product in } \mathbb{C}^{n *}\right)
\end{array}
$$

* The MATLAB $\operatorname{dot}()$ function computes the scalar product between complex vectors as:

$$
\operatorname{dot}(x, y)=F(x, y)=x^{H} y=\sum_{k=1}^{n} \bar{x}_{k} y_{k}, \quad x, y \in \mathbb{C}^{n}
$$

In this case the linearity property must be applied to the second argument

$$
F(z, a x+b y)=z^{H}(a x+b y)=a F(z, x)+b F(z, y), \quad x, y \in \mathbb{C}^{n}, a, b \in \mathbb{C}
$$

or, if applied to the first argument, the linearity property should be written as follows:

$$
F(a x+b y, z)=(a x+b y)^{H} z=\bar{a} F(x, z)+\bar{b} F(y, z), \quad x, y \in \mathbb{C}^{n}, a, b \in \mathbb{C}
$$

3. Find the value of α such that the vectors $\boldsymbol{u}=(-3,2)^{\top}$ and $v=(2, \alpha)^{\top}$ be orthogonal.
4. Given the two vectors $\boldsymbol{r}=(2,-1)^{\top}$ and $\boldsymbol{s}=(-1,2)^{\top}$, find a vector $\boldsymbol{x}=\left(x_{1}, x_{2}\right)^{\top}$ such that $\langle\boldsymbol{x}, \boldsymbol{r}\rangle=1$ and $\langle\boldsymbol{x}, \boldsymbol{s}\rangle=0$, where angle brackets denote the standard scalar product in \mathbf{R}^{2}.
5. If A is a matrix of size $(m \times n)$, prove that the Null Space of $A, \mathcal{N}(A)$, is orthogonal to the Row Space of $A, \mathscr{R}\left(A^{\top}\right)$.
6. Vector $\boldsymbol{p}=(150,225,375)^{\top}$ represents the price of certain models of bicycles, and vector $\boldsymbol{n}=(10,7,9)^{\top}$ represents the number of bicycles sold for each model, respectively. Compute the scalar product of \boldsymbol{n} and \boldsymbol{p}, and state its meaning.
7. Check whether the following vectors are mutually orthogonal or not, and draw vectors:
$7.1 \boldsymbol{u}=(2,1)^{\top}$ e $\boldsymbol{v}=(-1,2)^{\top}$.
$7.2 \boldsymbol{u}=(3,-1,-2)^{\top}$ e $\boldsymbol{v}=(-2,-3,1)^{\top}$.
$7.3 \boldsymbol{u}=(1,-1,0)^{\top}$ e $\boldsymbol{v}=(7,2,-1)^{\top}$.
Compute and draw the component of the vector v along u. For example, in 7.3 the figure might look as follows:

8. Find and draw all vectors \boldsymbol{v} orthogonal to vector \boldsymbol{u}, where:
$8.1 \boldsymbol{u}=(3,4)^{\top}$.
$8.2 \boldsymbol{u}=(1,-1,-1)^{\top}$.
Is this set a linear subspace?
9. What is the set of vectors orthogonal simultaneously to $(1,1,1)^{\top}$ and $(1,2,3)^{\top}$. Fit the answer in the subject matter of Fundamental Subspaces of a matrix?
10. Compute the scalar product between vectors \boldsymbol{u} and \boldsymbol{v} starting from:
$10.1\|\boldsymbol{u}\|=5,\|\boldsymbol{v}\|=3$ and the angle between \boldsymbol{u} and \boldsymbol{v} equals 30°.
$10.2\|\boldsymbol{u}\|=20,\|\boldsymbol{v}\|=15$ and the angle between \boldsymbol{u} and \boldsymbol{v} equals 225°.
11. For a random real matrix A, of size (2×2), estimate its condition number $\kappa(A)$ by means of MATLAB Symbolic Math Toolbox, and compare the result with cond $(A) . \kappa(A)$ is defined by:

$$
\kappa(A)=\frac{\max _{v \geq 0} \frac{\|A v\|_{2}}{\|v\|_{2}}}{\min _{v \geq 0} \frac{\|A v\|_{2}}{\|v\|_{2}}}
$$

12. Given a triangle with vertices A, B and C , draw it and compute the angle in A in degrees:
12.1 A (2,-7), B(1,1) e C(6,3$)$.
12.2 A($1,1,8), \mathrm{B}(4,-3,-4)$ e $\mathrm{C}(-3,1,5)$.
13. Given a triangle with vertices A, B and C, draw it and identify "efficiently" whether it is an acute, obtuse or right triangle:
13.1 $\mathrm{A}(2,3,0), \mathrm{B}(3,1,-2)$ e $\mathrm{C}(-1,4,5)$.
13.2 A(5,1,0), B(7,1,1) e C(6,3,2).
14. Given N samples on a regular curve Γ in the plane, choose a random sample point $\left(\mathrm{P}_{0}\right)$ and compute ("numerically") the tangent line and the normal line to the curve at P_{0}. The parametric equation of the curve can be only used to produce samples and p to check the goodness of the results in their graphical display. For example, the curve Involute of a Circle has the following parametric equations:

$$
\begin{aligned}
& x=\cos (\theta)+\theta \sin (\theta) \\
& y=\sin (\theta)-\theta \cos (\theta)
\end{aligned}
$$

[Other curves at: http://mathshistory.st-andrews.ac.uk/Curves/Curves.html]
Compute the angle between the tangent line at P_{0} and the x-axis.
What happens if P_{0} differs from all samples?

