Exercises and Laboratories

SC2_02 - Linear Spaces and Subspaces.

1. Start with the vectors $\boldsymbol{v}_{1}=(1,2,0)^{\top}$ and $\boldsymbol{v}_{2}=(2,3,0)^{\top}$.

- Are they linearly independent?
- What space \mathbf{V} do they span and what is the dimension of \mathbf{V} ?
- Which matrices \boldsymbol{A} have \mathbf{V} as their Column Space?
- Which matrices \boldsymbol{B} have \mathbf{V} as their Null Space?

2. Prove that the following sets of real n-tuples are linear subspaces of \mathbf{R}^{n} :

- $W=\left\{\boldsymbol{x} \in \mathbf{R}^{n}: \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{n}\right)^{\top} \wedge x_{j}=0\right.$ for a fixed $\left.j\right\}$
- $W=\left\{\boldsymbol{x} \in \mathbf{R}^{n}: \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \wedge x_{1}=x_{2}=\ldots=x_{n}\right\}$
- $W=\left\{\boldsymbol{x} \in \mathbf{R}^{n}: \sum_{k=1, \ldots, n} x_{k}=0\right\}$

To do this, you can also use the MATLAB Symbolic Math Toolbox for a particular value of n.
3. Then, find the dimension and a basis of the previous subspaces.
4. Similarly to what was said about a segment in \mathbf{R}^{2}, let us consider the parametric equation of a plane ${ }^{*}$ in \mathbf{R}^{3}, once three misaligned points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are given:

$$
\pi: P=P_{1}+\lambda\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)+\mu\left(\mathrm{P}_{3}-\mathrm{P}_{1}\right), \quad \lambda, \mu \in \mathbf{R}
$$

If we limit the real parameters $\lambda, \mu \in[0,1]$, then the previous equation describes the parallelogram having these three points as vertices [SC2_02b.pdf].

- Is this parallelogram a subspace of \mathbf{R}^{3} ?
- Given another point, establish if it belongs to the parallelogram [see SC2_02b.pdf for some test points].
[*Indeed, the previous parametric equation is related to a plane that is an affine subspace of the 3D real Affine Space (we'll study these spaces later)]

