L. Magistrale in IA (ML\&BD)

Scientific Computing (part 2 - 6 credits)

Centro Direzionale di Napoli - Bldg. C4 room: n. 423 - North Side, $4^{\text {th }}$ floor phone: 0815476545 email: mariarosaria.rizzardi@uniparthenope.it

Basics of Algebra

Commutative group (or abelian group) $\langle\boldsymbol{G}, \#\rangle$

It is a set \boldsymbol{G} together with an operation \# such that:

$$
\forall \alpha, \beta \in G, \quad \alpha \# \beta \in G
$$

1. $\forall \alpha, \beta, \gamma \in G(\alpha \# \beta) \# \gamma=\alpha \#(\beta \# \gamma)$
(associativity of \#)
2. $\exists \alpha_{o} \quad \beta \# \alpha_{o}=\beta$
3. $\forall \beta \exists \beta^{*}: \beta \# \beta^{*}=\alpha_{\text {o }}$
4. $\forall \alpha, \beta \quad \alpha \# \beta=\beta \# \alpha$

Linear (or vector) spaces

Let \boldsymbol{X} be a set (named as support of the space) and \boldsymbol{K} a field of numbers (usually \boldsymbol{K} is \mathbb{R} or \mathbb{C}).
$\langle\boldsymbol{X}, \boldsymbol{K},+, *\rangle$ is a LINEAR SPACE (or VECTOR SPACE) if X is a collection of objects called vectors, which may be added together (+) and multiplied (*) or "scaled" by numbers in \boldsymbol{K}, called scalars in this context:

- addition

$$
\begin{aligned}
& \quad \text { internal } \\
& +:(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{X} \times \boldsymbol{X} \longrightarrow \boldsymbol{u} \text { inside the space } \\
& \boldsymbol{u}+\boldsymbol{v} \in \boldsymbol{X}
\end{aligned}
$$

- multiplication by a scalar

$$
\begin{gathered}
\text { external } \\
*:(\boldsymbol{\alpha}, \boldsymbol{v}) \in \boldsymbol{K} \times \boldsymbol{X} \longrightarrow \boldsymbol{\alpha}
\end{gathered}
$$

addition and multiplication: properties

$1 \exists 0 \in X \quad: \quad \forall x \in X \quad x+0=x \quad$ (existence and unicity of identity element or zero vector)
$2 \forall x \in X \quad \exists-x \in X: \quad x+(-x)=0 \quad$ (existence and unicity of the opposite, or additive inverse, of x)
$3 \forall x, y \in X \quad x+y=y+x$
(commutativity law)
$4 \forall x, y, z \in X \quad(x+y)+z=x+(y+z)$
(associativity law)
$5 \forall x \in X, \forall \alpha, \beta \in K \quad \alpha(\beta x)=(\alpha \beta) x \quad$ (compatibility of scalar multiplication with field multiplication)
$6 \forall x \in X, \forall \alpha, \beta \in K(\alpha+\beta) x=\alpha x+\beta x$
$7 \forall x, y \in X, \forall \alpha \in K \quad \alpha(x+y)=\alpha x+\alpha y$
(distributivity law)

Linear combination of two vectors

Given two scalars α and β and two vectors u and v, then the w vector defined as

$$
w=\alpha u+\beta v
$$

is named as linear combination of u and v.

A linear space contains all the linear combinations of its vectors.

Examples of Linear spaces

* \mathbb{R}^{2} : set of vectors in the plane (a pair of real components).
* \mathbb{C}^{2} : set of vectors with two complex components.
* \mathbb{R}^{3} : set of vectors with three real components.
* \mathbb{C}^{3} : set of vectors with three complex components.
* \mathbb{R}^{n} : set of vectors with n real components (n-tuple).
- \mathbb{C}^{n} : set of vectors with n complex components.
* $M_{(m \times n)}(\mathbb{R})$: Set of real matrices of size $\mathrm{m} \times \mathrm{n}$.
* $\mathcal{N}(\boldsymbol{A})$: Set of solutions of a homogeneous system $\boldsymbol{A x}=\underline{0}$.
* $\boldsymbol{C}(\boldsymbol{a}, \boldsymbol{b})$: Set of real functions $f(x)$ continuous on (a, b).

Examples

* Why a line in the plane and passing through the origin is a linear space?

This line contains all the vectors that lie on it, and this set verifies all the properties of a linear space.

* Why a line in the plane that does not pass through the origin is not a linear space?

Since this line does not pass through the origin, it does not contain the zero vector. Then it is not a linear space.

Subspaces of a linear space

\boldsymbol{W} is a subspace of a linear space \boldsymbol{X}, if:

\boldsymbol{W} is a non-empty subset of \boldsymbol{X};
\boldsymbol{W} is a linear space.

Theorem

W is a subspace of X if, and only if, all the linear combinations of its vectors stay in the subspace.
W is a subspace

$$
\forall u, v \in W, \forall \alpha, \beta \in K \quad \alpha u+\beta v \in W
$$

Examples

Why the set of solutions of a homogeneous system

$$
A x=\underline{0}
$$

is a linear subspace?
Check if the previous Theor. holds

$$
x, y \in \mathscr{N} A: \begin{aligned}
& A x=\underline{0} \\
& A y=\underline{0}
\end{aligned} \Rightarrow A \alpha x+\beta y=\alpha A x+\beta A y=\underline{0}
$$

It is named as Null Space of A and denoted as $\mathbb{C N}(\mathrm{A})$.

* Why the set of solutions of a non-homogeneous system

$$
A x=b, \quad b \neq \underline{0}
$$

is not a linear subspace?

$$
\begin{aligned}
& A x=b \\
& A y=b
\end{aligned} \Rightarrow A \alpha x+\beta y=\alpha A x+\beta A y=\alpha+\beta \quad b \neq b
$$

Linear combination of \boldsymbol{n} vectors

We can extend to n vectors the definition of a linear combination:

$$
\begin{aligned}
& \forall v_{1}, v_{2}, \ldots, v_{n} \in X, \quad \forall \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in K \\
& w=\underbrace{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}}_{\text {linear combination of } n \text { vectors }} \Rightarrow w \in X
\end{aligned}
$$

The set \boldsymbol{W} containing all combinations of n vectors $v_{1}, v_{2}, \ldots, v_{n}$ is a subspace of \boldsymbol{X}, and it is denoted as

$$
\boldsymbol{W}=\operatorname{span} v_{1}, v_{2}, \ldots, v_{n}
$$

\boldsymbol{W} is the subspace of \boldsymbol{X} spanned by $v_{1}, v_{2}, \ldots, v_{n}$. (or generated)

Example of span\{...\}

The subspace spanned by a single vector u of \mathbb{R}^{2} is the line through the origin and overlaid to u.

$$
u=\binom{2}{1} \Rightarrow W=\operatorname{span} u
$$

$$
W=\left\{\alpha\left(\begin{array}{l}
2 \\
1
\end{array}, \forall \alpha \in \mathbb{R}\right\}\right.
$$

director vector of \boldsymbol{W}

director vector of \boldsymbol{W}	
MATLAB Symbolic Math Toolbox ${ }^{5}$	
	u=[2 1]'; syms a real; W=a*u;
fplot(W(1), W(2),[-12])	ezplot(W(1),W(2),[-1 2])
-	hold on; axis equal; grid on quiver(0,0,u(1),u(2), 'r')
	compass (u(1), u(2), 'r')

Example of span\{...\}

The subspace spanned by a single vector u of \mathbb{R}^{3} is the line through the origin and overlaid to u.

Example of span\{...\}

The subspace spanned by two vectors u, v of \mathbb{R}^{3} is the plane through the origin that contains u and v.

$$
u=\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right), \quad v=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \Rightarrow W=\operatorname{span} u, v \underbrace{}_{x=a+2 b, y=3 a, z=3 a+b}
$$

$W=\left\{\alpha\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)+\beta\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right), \forall \alpha, \beta \in \mathbb{R}\right\}$

MATLAB Symbolic Math Toolbox ${ }^{-2}$

```
u=[llll
syms a b real; W=a*u+b*v;
ezmesh(W(1),W(2),W(3),[-1 1])
hold on
quiver3(0,0,0,u(1),u(2),u(3),0,'Color','b')
quiver3(0,0,0,v(1),v(2),v(3),0,'Color','r')
```

