Exercises and Laboratories

SC2_01b - Solve, in MATLAB, the following exercises by using complex numbers.

1. The following code creates and displays N random complex numbers, which are considered as points in the real plane (see the left figure). We want to find a simple non-intersecting walk through them. But there is a problem: following the natural order of the points, the random path is often intertwined (see the right figure).
```
N=5;
rng('default') % comment this line to change the random seed each time
Zn=randn(N,1) + 1i*randn(N,1);
figure; patch(real(Zn),imag(Zn),'y'); grid on; box on; axis equal; hold on
plot(real(Zn),imag(Zn),'or','MarkerSize',16)
text(real(Zn),imag(Zn), num2str((1:numel(Zn))'),'HorizontalAlignment','center')
```


How to find a simple non-intersecting walk?
[Hint: compute the barycenter and make a suitable use of the argument of a complex number].
2. The following code creates and displays two random complex numbers, which are considered as vectors in the real plane (see the figure). They locate two half-lines.

```
N=2;
rng('default')
Zn=rand(N,1) + 1i*rand(N,1);
figure ; h=compass(Zn); set(h,'Color','b','LineWidth', 2)
```


How to find their bisector?
[Hint: make a suitable use of the argument of a complex number].
3. Starting from a random integer value n, find all the $n^{\text {th }}$ roots of a random complex number z by means of a primitive $n^{\text {th }}$ root of unity, selected randomly. The MATLAB function rand() returns
uniformly distributed pseudorandom real numbers between 0 and 1 ; the MATLAB function randi() returns uniformly distributed pseudorandom integers.
[Hint: first of all, compute a particular $n^{\text {th }}$ root of z; second, compute all the $n^{\text {th }}$ roots of unity and, among them, put only the primitive ones into a vector].
4. Display the surfaces of the real part, imaginary part and modulus of the function

$$
f(z)=z^{4}-i
$$

and add them the points corresponding to its zeros.

