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LTI systems in the time domain

A Linear time invariant (LTI) systems in the form

x(t) = Ax(t) + Bu(t) B
y(8) = Cx(t) + Du(ty *{fo) = %o

with A € R™", B € R™™  (C € RP*", D € RP*™ where x(t) is the state
vector, U(t) is the input vector and y(t) is the output vector of the system.
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Example of first-order LTI system:

hydraulic system

_ input:  u(t) = qi(t)

output: y(t) = h(t)

y Aav
R = s "% =4 (0)-4,0)

hp. laminar flow Input-output representation:

== Sy() =u(t) — ky(t) == Sy(t) + ky(t)=u(t)

State space representation: x(t) =— gx(t) + %u(t)

y(t) = x(t)
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Example of first order LTI system: RC circuit

+/ Vi@ +/yict) input:  u(®)=i()

i(t) D Ve(t) ] ve(t) = output:  y(®) = v (t)

Prof. Francesco Montefusco



LTI systems — circuit elements

+ /oy 10 + { it . 7 Yilt)

dv(t) di(t)

v(t) =Ri(t) i(t)=C T v(t) =L T
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Example of first order LTI system

o e HO=IO, YO =v®

. b ot L _ _ _ v(t) dv.(t)
i) (4) = i(0) = ig(®) + ic(8) =~ + C—

Input-output representation:

=) ()22 = u(d)

R

State space representation: 1 1
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va() v (1) u(t) =v(t), yt) =wv.(t)

V(1) | —— Input-output representation:

LCy(t) + RCy(t) + y(t) = u(t)

State space representation:
x,(t) = v (t) x,(t) = i1(t)

1 _ x:(’jﬂ):(_“ 1/c)x+(°)u
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Lagrange Formula

A Tet us consider a Linear Time Invariant (LTI) system in the form

x(t) = Ax(t) + Bu(t), x(to) = x 1
y(t) = Cx(t) + Du(t) (1)

The solution of the linear differential equation (1) defines the time
evolution of the state variables and 1t 1s given by the Lagrange Formula

x(t) = eAlt—to)x, 4 fti; eAt-DBy(r) dr, t=t, )

A The time evolution of the outputs turns out to be

t

‘, eACDBu()dr+Du(t), t=>t, (3

y(t) = CeAtt)x, + C
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Lagrange Formula

A Taking into account that

b(t) b(t)
d db d d

a(t) a(t)

A Tagrange formula (2) can be easily verified by detivation (assuming ty = 0)

t
d d
x(t) = o (e4txy) + eA=DBy(t) + JE [eA(t_T)B u(r)]dr
0

t

= Aeftxy + Bu(t) + jAeA(t_T)Bu(T)dT
0

t
= Aleftx, + j eA=DBy(1)dt| + Bu(t) = Ax(t) + Bu(t)
0
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Free and forced evolution of LTI systems

A The time evolution of the state and output variables can be conceptually
divided in two parts,

x(t) = eAlt-todx, + tto eAt-DByu(r) dr, t=t,
Free evolution Forced evolution

y(t) = CeAlt=tdy, + C ftt; eAt-DBy(t)dr + Du(t), t=t,

A The free evolution indicate the evolution of state and output vectors that
would be obtained in the absence of input (u(t) = 0).

A The forced evolution indicate the evolution of state and output vectors that
would be obtained in the presence of input and null initial conditions (xg = 0)
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Free evolution: matrix ‘A’ diagonalizable

A The free evolution of an LTI system in the time domain is defined by the

At

matrix exponential e“". Generalizing the Taylor expansion of an

exponential to the matrix case, we have
MZ

M =N Iyio e Mty
i! " 2!
=0

A 1In case the matrix A has real and distinct eigenvalues, it is diagonalizable and
At

e“" turns out to be
— 1 | 1
M= N S (AL) = Uzﬁ(At)‘ -1
i=0 i=0

=U diag{e’llt, et e’lnt}V

where Aq,A5 .. A, are the eigenvalues of the A matrix, U is
eigenvector matrix and V = U™ is the left eigenvector matrix.
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Free evolution: matrix ‘A’ diagonalizable

A The free evolution of an LTI system when the matrix A is diagonalizable
turns out to be:

etx, = U diag{eM?, e, ..., et }Vx,

et ... 0 v{
= (ul un) E .. : 3 XO
0 elnt vg;
n
= Z etityv! x,
i=1
n
_ z oty . Aperiodic
- | A
; Modes

o~
Il
[UY

where the coefficient ¢; € R™ are the projection of the initial state xq on the
eigenvector U;.
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Aperiodic evolution modes (1/4)

A An aperiodic mode is an evolution mode of a linear system related to a real
eigenvalue of the matrix A of multiplicity 1. It can be written in the form

c;etity,

A It gives us the evolution of the state along the ditection defined by the
eigenvector U; starting from an initial value ¢; (projection of the initial state x
on the eigenvalue u;).

A Depending on the sign of the eigenvalue 4;, an aperiod evolution modes can be
+ convergent (4; < 0)
+ constant  (4; = 0)
+ divergent  (A; > 0)
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Aperiodic evolution modes (2/4)

+ Convergent aperiodic mode

+ Constant aperiodic mode

4+ Divergent aperiodic mode 1> 0
i
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Aperiodic evolution modes (3/4)

CASE n=2 with Al >0 and Az< 0

A A

txo = creMtu + c ety

/ AN

Divergent aperiodic Convergent aperiodic
mode mode

e

Zo A1 > 0 _ eigenspace

eigenspace

aperiodic
modes
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Aperiodic evolution modes (4/4)

A When the evolution mode is convergent it is possible to introduce a new
parameter said time constant of the mode defined as

A The time constant gives us an information about the time needed before the
convergent mode will be extinguished.

A Tt is straightforward to verify that

4+ After a timet = 3T the magnitude of the mode will be reduced to the 5%
of the initial value

+ After a time t = 4. 6T the magnitude of the mode will be reduced to the
1% of the initial value
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Free evolution: matrix ‘A" no diagonalizable

A If A is not diagonalizable the decompositions can be implemented using the
Jordan form (see the book for details).

A When the matrix A has both ‘real distinct’ eigenvalues Aq,A5 ...4, and
‘complex conjugate’ eigenvalues a1t jwq, aytjw, ... a,t jw, of
multiplicity one, the free evolution of an L'TT system turns out to be:

- - cos(w;t)  sin(w;t)\ (v},
edlx, = Z etityv! x, +Z e“t(Ug  Up) ( : l ) < la) Xq

- £ —sin(w;t) cos(w;t)/ \ v},
N\ AN J
Y Y

Aperiodic Pseudo-periodic
Modes Modes

where U, and Uy are the real and the imaginary part of the complex
eigenvectors and Vg and vy, are the real and the imaginary part of the complex
left eigenvectors

Prof. Francesco Montefusco



Pseudo-periodic evolution modes (1/6)

A A pseudo-periodic mode is an evolution mode of a linear system related to a pair
of complex conjugate eigenvalues of molteplicity 1. It can be written in the form

cos(w;t) sin(a)lt)) vl N
0

ait ru u
e (Ma tn) (—sin(wlt) cos(w;t)

T
Uip

A Let us indicate with ¢, = vlTaxO and ¢pp = vlj;jxo. Introducing a new set of
variables related to the initial condition of the system:

Cla
—)
b

_ 2 2 _
m; = Jcla + ¢}, B; = arctg(Cl

the pseudo-periodic mode can be re-written as (see the book for details)

mye®t [uy, sin(w;t + ) + uy, cos(w;t + By) |
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Pseudo-periodic evolution modes (2/6)

A TLooking at a pseudo-periodic evolution mode in the form

mye®t [uy, sin(w;t + ;) + uy, cos(w;t + B) |
we note that:

<+ a pseudo-periodic evolution mode gives us the evolution of the state in the
p p g
plane defined by the vector u;, and uy,

+ a pseudo-periodic evolution mode defines spiral trajectories in the plane
defined by the vector U;, and U;yp. The convergence of the mode depends on
the real part of the complex conjugate eigenvalue

i) Lo
Uyp ﬂ Uy,
: > = - >

a; >0 a; =0 a; <0
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Pseudo-periodic evolution modes (3/6)

<+ Convergent pseudo-periodic mode /

4+ Constant pseudo-periodic mode /\ /\ /

<+ Divergent pseudo-periodic mode ‘ /\
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Pseudo-periodic evolution modes (4/6)

A Other important parameters for pseudo-periodic mode are the natural
frequency

o =N+

and the damping coefficient .
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Pseudo-periodic evolution modes (5/6)

A The natural frequency w, is the oscillation frequency of the pseudo-
periodic mode when a = 0.

A For convergent pseudo-periodic modes the damping coefficient {e(0,1]
while for divergent pseudo-periodic modes e [-1,0)

A For convergent pseudo-periodic modes, the damping coefficient { relates
the oscillations of the pseudo-periodic mode to the time before the
evolution will extinguish. For { < 1

a a T

=——=——= <1
¢ w;, w 27T

where T is the oscillation period. Indeed, the number of the oscillation
before the mode will extinguish increases when ¢ becomes small.
T T 1 3¢ # of oscillations

¢ = = mm) — = — before the mode will
2mt 61 2¢ T extinguish

~y
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Pseudo-periodic evolution modes (6/6)

Step Response
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Forced response in the time domain

A Let us consider the forced response of an LTI system in the output (xq = 0)

y(t)=C fOteA(t‘T)B u(t)dt+Du(t), t=t,

A The evaluation of the forced response in the time domain is demanding due to
the presence of the convolution product.

A Only in some particular case, such as the step response u(t) = u - 1(t), it
becomes straightforward

t

y(t) = Cj eAt-DBudr+ D1
0

= [-cA™'eAtDBq|. + D@
= CA™'e“'Bii + [-CA™'B + D] u

A In the other cases the forced response is evaluated in the Laplace domain
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