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LTI systems in the time domain

ñ Linear time invariant (LTI) systems in the form

�̇� 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 ,  𝑥 𝑡, = 𝑥,		

with 𝐴 ∈ 𝑅0×0, 	𝐵 ∈ 𝑅0×3, 	𝐶 ∈ 𝑅4×0, 	𝐷 ∈ 𝑅4×3, where 𝑥 𝑡 is the state 
vector, 𝑢 𝑡 is the input vector and 𝑦 𝑡 is the output vector of the system.
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Example of first-order LTI system: 
hydraulic system
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𝒖 𝒕 = 𝒒𝒊 𝒕

𝒚 𝒕 = 𝒉 𝒕

input:

output:

( ) ( )i u
dV q t q t
dt

= -

�̇� 𝒕 	= −
𝒌
𝑺
𝒙(𝒕) +

𝟏
𝑺
𝒖 𝒕

𝒚 𝒕 = 𝒙 𝒕

𝑺�̇� 𝒕 	=𝒖 𝒕 − 𝒌𝒚 𝒕
hp. laminar flow

𝑺�̇� 𝒕 + 𝒌𝒚 𝒕 =𝒖 𝒕
Input-output representation:

State space representation:

Pump
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Example of first order LTI system: RC circuit
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𝒖 𝒕 = 𝒊 𝒕

𝒚 𝒕 = 𝒗𝒄 𝒕

input:

output:
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LTI systems – circuit elements
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v 𝒕 = 𝑹	𝒊 𝒕 𝒊 𝒕 = 𝑪
𝒅𝒗 𝒕
𝒅𝒕

𝒗 𝒕 = 𝑳
𝒅𝒊 𝒕
𝒅𝒕



Prof. Francesco Montefusco Automatic Control Systems  2022/23

Example of first order LTI system

6

𝒊 𝒕 = 𝒊𝑹 𝒕 + 𝒊𝒄 𝒕 =
𝒗𝒄 𝒕
𝑹

+ 𝑪
𝒅𝒗𝒄 𝒕
𝒅𝒕

𝑪�̇� 𝒕 +𝒚 𝒕
𝑹
= 𝒖 𝒕

�̇� = −
𝟏

𝑪𝑹 𝒕
𝒙 +

𝟏
𝑪
𝒖

𝒚 = 𝒙

State space representation:

𝒖 𝒕 = 𝒊 𝒕 , 𝒚 𝒕 = 𝒗𝒄 𝒕

Input-output representation:
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𝑳𝑪�̈� 𝒕 + 𝑹𝑪�̇� 𝒕 + 𝒚 𝒕 = 𝒖 𝒕

𝒖 𝒕 = 𝒗 𝒕 , y 𝒕 = 𝒗𝒄 𝒕

Example of second-order LTI system: RLC circuit

x1 𝒕 = 𝒗𝒄 𝒕 x2 𝒕 = 𝒊𝑳 𝒕

�̇�𝟏 =
𝟏
𝑪
𝒙𝟐

�̇�𝟐 = −
𝟏
𝑳
𝒙𝟏 −

𝑹
𝑳
𝒙𝟐 +

𝟏
𝑳
𝒖

y= 𝒙𝟏

�̇� =
�̇�𝟏
�̇�𝟐

=
𝟎 𝟏

𝑪K

−𝟏 𝑳K −𝑹 𝑳K
𝒙 +

𝟎
𝟏
𝑳K
𝒖

𝒚 = 𝟏 𝟎 𝒙 𝒙 =
𝒙𝟏
𝒙𝟐

State space representation:

Input-output representation:
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Lagrange Formula

ñ Let us consider a Linear Time Invariant (LTI) system in the form

�̇� 𝑡 = 	𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ,	   𝑥 𝑡, = 𝑥,		
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 																												 (1)

The solution of the linear differential equation (1) defines the time
evolution of the state variables and it is given by the Lagrange Formula

𝑥 𝑡 = 𝑒M NONP 𝑥, + ∫ 𝑒M NOR 𝐵	𝑢 𝜏 	𝑑𝜏N
NP

,   𝑡 ≥ 𝑡, (2)

ñ The time evolution of the outputs turns out to be 

𝑦 𝑡 = 𝐶𝑒M NONP 𝑥, + 𝐶 ∫ 𝑒M NOR 𝐵	𝑢 𝜏 	𝑑𝜏N
NP

+ 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡, (3)
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Lagrange Formula

ñ Taking into account that 

𝑑
𝑑𝑡

V 𝑓 𝑡, 𝜏 	𝑑𝜏
X N

Y N

= 𝑓 𝑡, 𝑏 𝑡
𝑑𝑏 𝑡
𝑑𝑡

− 𝑓 𝑡, 𝑎 𝑡
𝑑𝑎 𝑡
𝑑𝑡

+ V
𝑑
𝑑𝑡
𝑓 𝑡, 𝜏 	𝑑𝜏

X N

Y N

ñ Lagrange formula (2) can be easily verified by derivation (assuming 𝑡, = 0	)

�̇� 𝑡 =
𝑑
𝑑𝑡

𝑒MN𝑥, + 𝑒M NON 𝐵𝑢 𝑡 + V
𝑑
𝑑𝑡

𝑒M NOR 𝐵	𝑢 𝜏 𝑑𝜏
N

,

= 𝐴𝑒MN𝑥, + 𝐵𝑢 𝑡 + V𝐴𝑒M NOR 𝐵𝑢 𝜏 𝑑𝜏
N

,

= 𝐴 𝑒MN𝑥, + V𝑒M NOR 𝐵𝑢 𝜏 𝑑𝜏
N

,

+ 𝐵𝑢 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
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Free and forced evolution of LTI systems

ñ The time evolution of the state and output variables can be conceptually 
divided in two parts, 

𝑥 𝑡 = 𝑒M NONP 𝑥, 					+ 						∫ 𝑒M NOR 𝐵	𝑢 𝜏 	𝑑𝜏N
NP

,   𝑡 ≥ 𝑡,

𝑦 𝑡 = 𝐶𝑒M NONP 𝑥, + 𝐶 ∫ 𝑒M NOR 𝐵	𝑢 𝜏 	𝑑𝜏N
NP

+ 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡,

ñ The free evolution indicate the evolution of state and output vectors that 
would be obtained in the absence of input (𝑢(𝑡) = 0). 

ñ The forced evolution  indicate the evolution of state and output vectors that 
would be obtained in the presence of input and null initial conditions (𝑥, = 0)

10

Free evolution Forced evolution
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Free evolution: matrix ‘A’ diagonalizable

ñ The free evolution of an LTI system in the time domain is defined by the
matrix exponential 𝑒MN.	 Generalizing the Taylor expansion of an
exponential to the matrix case, we have

𝑒^ =_
1
𝑖!
𝑀d

e

df,

= 𝐼0 + 𝑀 +
𝑀h

2!
+ ⋯

ñ In case the matrix 𝐴 has real and distinct eigenvalues, it is diagonalizable and 
𝑒MN	turns out to be

𝑒MN =_
1
𝑖!
(𝐴	𝑡)d

e

df,

= 𝑈_
1
𝑖!
(Λ𝑡)d

e

df,

𝑈Om

= 𝑈	diag 𝑒rsN, 𝑒rtN, … , 𝑒rvN 𝑉

where 𝝀𝟏, 𝝀𝟐 …𝝀𝒏 are the eigenvalues of the 𝑨 matrix, 𝑼 is
eigenvector matrix and 𝑽 = 𝑼O𝟏 is the left eigenvector matrix.

11
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Free evolution: matrix ‘A’ diagonalizable

ñ The free evolution of an LTI system when the matrix A is diagonalizable
turns out to be:

𝑒MN𝑥, = 𝑈	diag 𝑒rsN, 𝑒rtN, … , 𝑒rvN 𝑉x, 

																																			= (𝑢m … 𝑢0)	
𝑒rsN ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒rvN

𝑣m�
⋮
𝑣0�

x,

						= _𝑒r�N𝑢d𝑣d�𝑥,

0

dfm

=_𝑒r�N𝑢d𝑐d

0

dfm  

12

where the coefficient 𝑐d ∈ 𝑅0 are the projection of the initial state 𝑥,	 on the
eigenvector 𝑢d.

Aperiodic 
Modes
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Aperiodic evolution modes (1/4)

ñ An aperiodic mode is an evolution mode of a linear system related to a real
eigenvalue of the matrix A of multiplicity 1. It can be written in the form

𝑐d𝑒r�N𝑢d
ñ It gives us the evolution of the state along the direction defined by the

eigenvector 𝑢d starting from an initial value 𝑐d (projection of the initial state 𝑥,	
on the eigenvalue 𝑢d).

ñ Depending on the sign of the eigenvalue 𝜆d, an aperiod evolution modes can be

ò convergent (𝜆d < 0)

ò constant (𝜆d = 0)

ò divergent (𝜆d > 0)

13
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Aperiodic evolution modes (2/4)

ò Convergent aperiodic mode

ò Constant aperiodic mode

ò Divergent aperiodic mode

14

𝜆d < 0

𝜆d = 0

𝜆d > 0

t

t

t
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Aperiodic evolution modes (3/4)

CASE n=2 with 𝝀𝟏 > 𝟎 and 					𝝀𝟐< 𝟎

15

𝑒MN𝑥, = 𝑐m𝑒rsN𝑢m+ 𝑐h𝑒r𝟐N𝑢h

Convergent  aperiodic
mode  

Divergent  aperiodic
mode  
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Aperiodic evolution modes (4/4)

ñ When the evolution mode is convergent it is possible to introduce a new 
parameter said time constant  of the mode defined as 

𝜏d = −
1
𝜆d

ñ The time constant gives us an information about the time needed before the 
convergent mode will be extinguished.

ñ It is straightforward to verify that 

ò After a time 𝑡̅ = 𝟑𝝉 the magnitude of the mode will be reduced to the 5% 
of the initial value

ò After a time 	𝑡� = 𝟒. 𝟔𝝉 the magnitude of the mode will be reduced to the 
1% of the initial value
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Free evolution:  matrix ‘A’ no diagonalizable

ñ If A is not diagonalizable the decompositions can be implemented using the
Jordan form (see the book for details).

ñ When the matrix 𝐴 has both ‘real distinct’ eigenvalues 𝝀𝟏, 𝝀𝟐 …𝝀𝝁 and
‘complex conjugate’ eigenvalues 𝜶𝟏 ± 𝒋𝝎𝟏,	𝜶𝟐±𝒋𝝎𝟐 …	𝜶𝝂± 𝒋𝝎𝝂	 of
multiplicity one, the free evolution of an LTI system turns out to be:

𝑒MN𝑥, =_𝑒r�N𝑢d𝑣d�𝑥, +
�

dfm

_𝑒��N(𝑢�Y 𝑢�X)
cos	(𝜔�𝑡) sin	(𝜔�𝑡)
−sin	(𝜔�𝑡) cos	(𝜔�𝑡)

𝑣�Y�

𝑣�X�
	𝑥,

�

�fm

where 𝑢�Y and 𝑢�X are the real and the imaginary part of the complex
eigenvectors and 𝑣�Y and 𝑣�X are the real and the imaginary part of the complex
left eigenvectors

17

Aperiodic 
Modes

Pseudo-periodic 
Modes



Prof. Francesco Montefusco Automatic Control Systems  2022/23

Pseudo-periodic evolution modes (1/6)

ñ A pseudo-periodic mode is an evolution mode of a linear system related to a pair
of complex conjugate eigenvalues of molteplicity 1. It can be written in the form

𝑒��N(𝑢�Y 𝑢�X)
cos	(𝜔�𝑡) sin	(𝜔�𝑡)
−sin	(𝜔�𝑡) cos	(𝜔�𝑡)

𝑣�Y�

𝑣�X�
	𝑥,

ñ Let us indicate with 𝑐�Y = 𝑣�Y� 𝑥, and 𝑐�X = 𝑣�X� 𝑥,. Introducing a new set of
variables related to the initial condition of the system:

𝑚� = 𝑐�Yh + 𝑐�Xh
�

																															𝛽� = 𝑎𝑟𝑐𝑡𝑔(
𝑐�Y
𝑐�X
)

the pseudo-periodic mode can be re-written as (see the book for details)

𝑚�𝑒��N 𝑢�Y sin 𝜔�𝑡 + 𝛽� +	 𝑢�X cos 𝜔�𝑡 + 𝛽� 	

18
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Pseudo-periodic evolution modes (2/6)

ñ Looking at a pseudo-periodic evolution mode in the form

𝑚�𝑒��N 𝑢�Y sin 𝜔�𝑡 + 𝛽� +	 𝑢�X cos 𝜔�𝑡 + 𝛽� 	

we note that:

ò a pseudo-periodic evolution mode gives us the evolution of the state in the
plane defined by the vector 𝑢�Y and 𝑢�X

ò a pseudo-periodic evolution mode defines spiral trajectories in the plane
defined by the vector 𝑢�Y and 𝑢�X.	The convergence of the mode depends on
the real part of the complex conjugate eigenvalue

19

𝒖𝒍𝒂

𝒖𝒍𝒃

𝒖𝒍𝒂

𝒖𝒍𝒃
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Pseudo-periodic evolution modes (3/6)

20

ò Convergent pseudo-periodic mode

ò Constant pseudo-periodic mode

ò Divergent pseudo-periodic mode

𝜶𝒍 = 0

𝜶𝒍 > 0

t

t

t

𝒆𝜶𝒍𝒕											𝜶𝒍 < 𝟎	

𝒆𝜶𝒍𝒕
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Pseudo-periodic evolution modes (4/6)

ñ For convergent pseudo-periodic mode,  the time constant  is defined as

𝜏d = − m
��

ñ Other important parameters for pseudo-periodic mode  are  the natural 
frequency

and the damping coefficient

21

2 2
nw a w= +

22 wa
az
+

-=
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Pseudo-periodic evolution modes (5/6)

ñ The natural frequency 𝝎𝒏 is the oscillation frequency of the pseudo-
periodic mode when 𝛼 = 0.

ñ For convergent pseudo-periodic modes the damping coefficient zÎ(0,1]
while for divergent pseudo-periodic modes zÎ[-1,0)

ñ For convergent pseudo-periodic modes, the damping coefficient 𝜻 relates
the oscillations of the pseudo-periodic mode to the time before the
evolution will extinguish. For ζ ≪ 1

𝜻 = −
𝜶
𝝎𝒏

≅ −
𝜶
𝝎
=

𝑻
𝟐𝝅𝝉	

≪ 𝟏

where 𝑇 is the oscillation period. Indeed, the number of the oscillation 
before the mode will extinguish  increases when 𝜻 becomes small. 

22

𝟏
𝟐𝜻

≅
𝟑𝝉
𝑻	

# of oscillations
before the mode will
extinguish

𝜻 =
𝑻

𝟐𝝅𝝉	
≅

𝑻
𝟔𝝉	
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Pseudo-periodic evolution modes (6/6)
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Forced response in the time domain

24

ñ Let us consider the forced response of an LTI system in the output   (𝑥, = 0)

𝑦 𝑡 = 𝐶 ∫ 𝑒M NOR 𝐵	𝑢 𝜏 	𝑑𝜏N
, + 𝐷	𝑢(𝑡),   𝑡 ≥ 𝑡,

ñ The evaluation of the forced response in the time domain is demanding due to 
the presence of the convolution product.

ñ Only in some particular case, such as the step response  𝒖 𝒕 = 𝒖� ⋅ 𝟏(𝒕), it 
becomes straightforward

𝑦 𝑡 = 𝐶V 𝑒M NOR 𝐵	�̄�	𝑑𝜏
N

,
+ 𝐷	�̄�

									= −𝐶𝐴Om𝑒M NOR 𝐵�̄� ,
N
+ 𝐷	�̄�

																		= 𝐶𝐴Om𝑒MN𝐵�̄� + [−𝐶𝐴Om𝐵 + 𝐷]	�̄�

ñ In the other cases the forced response is evaluated in the Laplace domain


