<u>The Macroeconomics of</u> <u>Innovation:</u> <u>Models of Economic Growth -</u> Endogenous technology growth

Valentina Chiariello

University of Naples "Parthenope" - DiSAE

Economics of innovation

Exogenous technology growth

- Solow (and Swan) models show that technological change drives growth
- But growth of technology is not determined within the model (it is exogenous)
- Note that it does <u>not</u> show that capital investment is unimportant ($A^{\uparrow} \Rightarrow \uparrow y$ and $\uparrow MP_k$, hence $\uparrow k$)
- In words better technology raises output, but also creates new capital investment opportunities
- Endogenous growth models try to make endogenous the driving force(s) of growth
- Can be technology or other factors like learning by workers

The AK model

- The 'AK model' is sometimes termed an 'endogenous growth model'
- The model has Y = AK where K can be thought of as some composite 'capital and labour' input
- Clearly this has constant marginal product of capital (MP_k = dY/dK=A), hence long run growth is possible
- Thus, the 'AK model' is a simple way of illustrating endogenous growth concept
- However, it is very simple! 'A' is poorly defined, yet critical to growth rate
- Also composite 'K' is unappealing

The AK model in a diagram

Endogenous technology growth

 Suppose that technology depends on past investment (i.e. the process of investment generates new ideas, knowledge and learning).

$$A = g(K) \quad \text{where} \quad \frac{dA}{dK} > 0$$

Specifically, let $A = K^{\beta} \qquad \beta > 0$
Cobb-Douglas production function
 $Y = AK^{\alpha}L^{1-\alpha} = [K^{\beta}]K^{\alpha}L^{1-\alpha} = K^{\alpha+\beta}L^{1-\alpha}$

If α + β = 1 then marginal product of capital is constant (dY/dK = L^{1- α}).

- Assuming A=g(K) is Ken Arrow's (1962) learning-by-doing paper
- Intuition is that learning about technology prevents marginal product declining

capital per worker k=K/L

Increasing returns to scale

$$Y = K^{\alpha + \beta} L^{1 - \alpha} \quad \text{with } \alpha + \beta = 1$$

- "Problem" with Y = K¹L^{1-α} is that it exhibits increasing returns to scale (doubling K and L, more than doubles Y)
- IRS \Rightarrow large firms dominate, no perfect competition (no P=MC, no first welfare theorem)
- solution, assume feedback from investment to A is <u>external</u> to firms (note this is positive externality, or spillover, from microeconomics)

Knowledge externalities

A firm's production function is $Y_i = A_i K_i^{\alpha} L_i^{1-\alpha}$ but A_i depends on aggregate capital (hence firm does not 'control' increasing returns)

- Romer (1986) paper formally proves such a model has a competitive equilibrium
- However, the importance of <u>externalities</u> in knowledge (R&D, technology) long recognised
- Endogenous growth theory combines IRS, knowledge externalities and competitive behaviour in (dynamic optimising) models

Knowledge externalities

Knowledge spillovers occur between firms, hence the economylevel production function is different from the firm-level production function.

This basic result turns out to have very important implications. The model suggests that:

- 1) the competitive growth rate is below the socially optimal growth rate (due to the presence of knowledge externalities);
- 2) shocks and policies may have permanent effects on a country's growth rate;
- 3) large countries may grow faster (a scale effect).

More formal endogenous growth models

- Romer (1990), Jones (1995) and others use a model of profit-seeking firms investing in R&D
- A firm's R&D raises its profits, but also has a **positive externality** on other firms' R&D productivity (can have competitive behaviour at firm-level, but IRS overall)
- Assume $Y = K^{\alpha}(AL_{Y})^{1-\alpha}$
- Labour used either to produce output $(L_{\rm Y})$ or technology $(L_{\rm A})$
- As before, A is technology (also called 'ideas' or 'knowledge')
- Note total labour supply is $L = L_Y + L_A$

Romer model

Assume $\frac{dA}{dt} = \delta L_A^{\ \lambda} A^{\phi} \qquad \delta > 0$

This is differential equation. Can *A* have constant growth rate?

Answer: depends on parameters ϕ and λ and growth of L_A

Romer (1990) assumed: $\lambda = 1, \phi = 1$ hence $\frac{dA}{dt} = \delta L_A A$ $\Rightarrow \frac{dA}{dt} / A = \delta L_A$ (>0 if some labour allocated to research) If A has positive growth, this will give long run growth in GDP*p.w.* Note that there is a 'scale effect' from L_A

Note '**knife edge**' property of ϕ =1. If ϕ >1, growth rate will accelerate over time; if ϕ <1, growth rate falls.

Jones model (semi-endogenous)

$$\lambda > 0, \phi < 1 \quad \text{(Jones, 1995)}$$
Now $\frac{dA}{dt} = \delta L_A^{\lambda} A^{\phi} \implies \frac{dA}{dt} / A = \frac{\dot{A}}{A} = \frac{\delta L_A^{\lambda} A^{\phi}}{A} = \frac{\delta L_A^{\lambda}}{A^{1-\phi}}$
Can only have positive long run growth if far right term is constant
This only when $\lambda \frac{\dot{L}_A}{L_A} = (1-\phi) \frac{\dot{A}}{A} \quad \text{or} \quad \frac{\dot{A}}{A} = \frac{\lambda}{(1-\phi)} \frac{\dot{L}_A}{L_A}$
In words: growth of technology = constant × labour growth

• No scale effects, no 'knife edge' property, but requires (exogenous) labour force growth hence "semiendogenous" (see Jones (1999) for discussion)

Human capital – the Lucas model

- Lucas defines human capital as the skill embodied in workers
- Constant number of workers in economy is N
- Each one has a human capital level of h
- Human capital can be used either to produce output (proportion *u*)
- Or to accumulate new human capital (proportion *1-u*)
- Human capital grows at a constant rate dh/dt = h(1-u)

Lucas model in detail

• The production of output (Y) is given by

 $Y = AK^{\alpha} (uhN)^{1-\alpha} h_{a}^{\gamma}$

where $0 < \alpha < 1$ and $\gamma \ge 0$

- Lucas assumed that technology (A) was constant
- Note the presence of the extra term h_a^{γ} this is defined as the 'average human capital level'
- This allows for external effect of human capital that can also influence other firms, e.g. higher average skills allow workers to communicate better
- Main driver of growth As h grows the effect is to scale up the input of workers N, so raising output Y and raising marginal product of capital K

Creative destruction and firm-level activity

- many endogenous growth models assume profitseeking firms invest in R&D (ideas, knowledge)
 - Incentives: expected <u>monopoly</u> profits on new product or process. This depends on probability of inventing and, if successful, expected length of monopoly (strength of intellectual property rights e.g. patents)
 - Cost: expected labour cost (note that 'cost' depends on productivity, which depends on extent of spillovers)
- models are 'monopolistic competitive' i.e. free entry into R&D ⇒ zero profits (fixed cost of R&D=monopoly profits). 'Creative destruction' since new inventions destroy markets of (some) existing products.
- without 'knowledge spillovers' such firms run into diminishing returns
- such models have <u>three</u> potential market failures, which make policy implications unclear

Market failures in R&D growth models

- 1. Appropriability effect (monopoly profits of a new innovation < consumer surplus) \Rightarrow **too little R&D**
- 2. Creative-destruction, or business stealing, effect (new innovation destroys profits of existing firms), which private innovator ignores \Rightarrow **too much R&D**
- Knowledge spillover effect (each firm's R&D helps reduce costs of others innovations; positive externality) ⇒ too little R&D
- The overall outcome depends on parameters and functional form of model

What do we learn from such models?

- Growth of technology via 'knowledge spillovers' vital for economic growth
- Competitive profit-seeking firms can generate investment & growth, but can be market failures ('social planner' wants to invest more since spillovers not part of private optimisation)
- Spillovers, clusters, networks, business-university links all potentially vital
- But models too generalised to offer specific policy guidance

Competition and growth

- Endogenous growth models imply greater competition, lower profits, lower incentive to do R&D and lower growth (R&D line shifts down)
- But this conflicts with economists' basic belief that competition is 'good'!
- Theoretical solution
 - Build models that have optimal 'competition'
 - Aghion-Howitt model describes three sector model ("escape from competition" idea)
- Intuitive idea is that 'monopolies' don't innovate

Do 'scale effects' exist

- Romer model implies countries that have more 'labour' in knowledge-sector (e.g. R&D) should grow faster
- Jones argues this not the case (since researchers in US ↑ 5x (1950-90) but growth still ≈2% p.a.
- Hence, Jones claims his semi-endogenous model better fits the 'facts', BUT
 - measurement issues (formal R&D labs increasingly used)
 - 'scale effects' occur via knowledge externalities (these may be regional-, industry-, or network-specific)
 - Kremer (1993) suggests higher population (scale) does increase growth rates over last 1000+ years
- anyhow.... both models show ϕ (the 'knowledge spillover' parameter) is important

Convergence debate: Do poorer countries grow faster?

Two common ways to assess convergence

- 1. Beta (β) convergence
- 2. Sigma (σ) convergence

<u> β -convergence</u> (use regression analysis)

 $growth_i = constant + \beta (initial GDP p.w.)_i$

(i stands for a country. Test on sample of 60+)

If $\beta < 0$, poorer countries, on average, grow faster

<u>σ-convergence</u>

measure **dispersion** (variance) of GDP per worker across countries in a given year. If dispersion **falls** over time can say countries 'converging'.

Problems and other evidence

- There are more than 110 countries (UN 191). The poorest countries often don't have data. Hence above result could be mis-leading.
- L Pritchett (1997) "Divergence, Big Time".
 - 1870-1990, rich countries got much richer
 - 9/1 ratio in 1870; 45/1 ratio in 1990
- Some view the 1960s-80s as good decades for poorer countries – normally divergence
- "Conditional convergence".
 - If regression analysis controls for other factors (e.g. investment), poorer countries do grow faster.
 - Not very surprising ….. what are other factors?

What are mechanisms driving 'convergence'?

- Important to understand basic data, but real issue is mechanisms
- Consider some 'theory' initially
 - open economy growth models
 - models of technological catch-up
- Note: this 'convergence' is not 'Solow-Swan convergence to steady state'
 - can consider country convergence in S-S model but must assume technology common to all countries

Conclusions

Sigma (σ) convergence

- Using unweighted measures, cross-country evidence suggests 'divergence'
- Weighted measures ⇒ convergence over last 30 years due to performance of China
- However, most recent 'world inequality' measures based on within and across country data, ⇒ divergence

Beta (β) convergence

- No unconditional convergence
- There is conditional convergence (poorer countries grow faster if you control for other factors)
- Expect this (basic closed economy Solow and endogenous growth models predict this)