Analisi Matematica 1 (SNAMO): SECONDA PROVA INTRACORSO - 22/12/2022 - Traccia AM1-A

Candidato (cognome, nome, matricola): Riportare le risposte sintetiche negli spazi appositi, scrivere lo svolgimento per esteso su fogli a parte che allegherete, indicando di volta in volta il numero dell'esercizio che state svolgendo. Sulla prima facciata di ogni foglio allegato, in alto al centro, scrivere TRACCIA AM1-A, COGNOME, NOME E MATRICOLA. Esercizio A1 (4 punti). Calcolare i limiti A1.a) $\lim_{x \to +\infty} \frac{x^2 - \log x}{x + e^{-x}} =$ A1.b) $\lim_{x\to 0} \frac{1-e^{-x}}{\sin(3x)} =$ Esercizio A2 (5 punti). Individuare il dominio naturale, calcolare i limiti alle estremità e scrivere le equazioni degli eventuali asintoti per la funzione di legge $f(x) = x \exp\left(\frac{2}{x-1}\right)$. dominio: $\lim_{x \to \square} f(x) = \boxed{\qquad}, \quad \lim_{x \to \square} f(x) = \boxed{$ asintoto verticale? \square sì \square no se sì, di equazione: asintoto orizzontale? \square sì \square no se sì, di equazione: asintoto obliquo? \square sì \square no se sì, di equazione: Esercizio A3 (5 punti). Dopo aver individuato il dominio naturale, trovare tutti i punti stazionari della funzione di legge $f(x) = \log \frac{x-3}{(x+1)^2}$ e classificarli. dominio: punto stazionario: \square massimo \square minimo \square flesso \square non so punto stazionario: \square massimo \square minimo ☐ flesso \square non so punto stazionario: \square massimo \square minimo \square flesso \square non so Esercizio A4 (8 punti). Calcolare gli integrali indefiniti/definiti: A4.a) $\int_0^3 \frac{x^2 - 8}{x^2 - 6x + 10} dx$ A4.b) $\int (x e^x - \sin(2x)) dx =$

Esercizio A5 (7 punti). Data la legge $f(x) = (x-1)\sqrt[3]{x^2}$, rispondere ai seguenti quesiti motivando le risposte
A5.i) dominio naturale:
A5.ii) derivata: $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
A5.iii) equazione della retta tangente in $x = 1$:
$A5.\mathrm{iv})$ Le ipotesi del Teorema degli zeri sono soddisfatte in $[0,1]$ \square sì \square no
$A5.v)$ Le ipotesi del Teorema di Rolle sono soddisfatte in $[0,1]$ \square sì \square no
$A5.vi)$ Le ipotesi del Teorema di Lagrange sono soddisfatte in $[-1,1]$ \square sì \square no
$3+2x-x^2$
Esercizio A6 (10 punti). Data la funzione di legge $f(x) = \frac{3 + 2x - x^2}{2 + x}$, determinare
A6.a) il dominio naturale $dom(f) =$
A6.b) la derivata, gli intervalli di monotonia e gli eventuali estremi relativi :
f'(x) =
f crescente in: f decrescente in:
punti stazionari in $x =$
punto di max. relativo in $x = $ punto di min. relativo in $x = $
A6.c) i valori estremi assoluti (precisando se sono min/max) e l'immagine:
$\sup f = \qquad \text{è il massimo?} \Box \text{ sì } \Box \text{ no;} \inf f = \qquad \text{è il minimo?} \Box \text{ sì } \Box \text{ no;}$
$\operatorname{Im} f =$
A6.d) la derivata seconda, gli intervalli di convessità e gli eventuali flessi:
f''(x) =
f convessa in: f concava in:
punti di flesso in $x =$
A6.e) grafico: (nel foglio allegato) A6.f) dire poi se le seguenti affermazioni sono vere o false: • $f(x)$ è suriettiva \Box vero \Box falso • $f(x)$ è iniettiva \Box vero \Box falso • l'equazione $f(x) = 5$ ha esattamente 2 soluzioni \Box vero \Box falso

Analisi Matematica 1	(SNAMO): SECONDA PROVA	A INTRACORSO	- 22/12/2022 -	Traccia
	AM1-B			

Sulla prima facciata di ogni fogli	n volta il numero dell'esercizio che state svolgendo. io allegato, in alto al centro, scrivere A AM1-B, COGNOME, NOME E MATRICOLA.
Esercizio B1 (4 punti). Calcolar B1.a) $\lim_{x \to +\infty} \frac{3^x - x^3}{x^4 + \log(x^3)}$	
, - ,	uare il dominio naturale, calcolare i limiti alle estremità e scrivere le $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
equazioni degli eventuali asinto	pti per la funzione di legge $f(x) = x \exp\left(\frac{1}{(1+x)^2}\right)$.
dominio:	
$\lim_{x \to \bigcap} f(x) = \boxed{,}$	$\lim_{x \to \square} f(x) = \boxed{\qquad \qquad ,} \qquad \lim_{x \to \square} f(x) = \boxed{\qquad \qquad ,}$
$\lim_{x \to \square} f(x) = \boxed{,}$	$\lim_{x \to \square} f(x) = \lim_{x \to \square} f(x) = \lim_{x$
asintoto verticale? □ sì □	I no se sì, di equazione:
asintoto orizzontale? □ sì	$ \Box $ no se sì, di equazione:
asintoto obliquo? □ sì □	
D2 (5	aver individuato il dominio naturale, trovare tutti i punti stazionar
esercizio B3 (5 punti). Dopo a della funzione di legge $f(x) = 1$	$\log \frac{x+1}{(x+3)^2}$ e classificarli.
della funzione di legge $f(x) = 1$ dominio: punto stazionario:	\square massimo \square minimo \square flesso \square non so
della funzione di legge $f(x) = 1$ dominio: punto stazionario: punto stazionario:	□ massimo $□$ minimo $□$ flesso $□$ non so $□$ massimo $□$ minimo $□$ flesso $□$ non so
della funzione di legge $f(x) = 1$ dominio: punto stazionario:	\square massimo \square minimo \square flesso \square non so
della funzione di legge $f(x) = 1$ dominio: punto stazionario: punto stazionario: punto stazionario:	□ massimo $□$ minimo $□$ flesso $□$ non so $□$ massimo $□$ minimo $□$ flesso $□$ non so
della funzione di legge $f(x) = 1$ dominio: punto stazionario: punto stazionario: punto stazionario:	□ massimo □ minimo □ flesso □ non so □ massimo □ minimo □ flesso □ non so □ massimo □ minimo □ flesso □ non so

Esercizio B5 (7 punti). Data la legge $f(x) = x\sqrt{(1-x)^3}$, rispondere ai seguenti quesiti motivando le risposte:
B5.i) dominio naturale:
B5.ii) derivata: $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
B5.iii) equazione della retta tangente in $x = 0$:
$B5.iv)$ Le ipotesi del Teorema degli zeri sono soddisfatte in $[0,1]$ $\hfill\square$ sì $\hfill\square$ no
$B5.v)$ Le ipotesi del Teorema di Rolle sono soddisfatte in $[0,1]$ $\hfill\square$ sì $\hfill\square$ no
B5.vi) Le ipotesi del Teorema di Lagrange sono soddisfatte in $[-1,1]$ \square sì \square no
$x^2 + 2x - 3$
Esercizio B6 (10 punti). Data la funzione di legge $f(x) = \frac{x^2 + 2x - 3}{x - 2}$, determinare
B6.a) il dominio naturale $dom(f) =$
B6.b) la derivata, gli intervalli di monotonia e gli eventuali estremi relativi :
f'(x) =
f crescente in: f decrescente in:
punti stazionari in $x =$
punto di max. relativo in $x = $ punto di min. relativo in $x = $
B6.c) i valori estremi assoluti (precisando se sono min/max) e l'immagine:
$\sup f = \qquad \text{è il massimo?} \Box \text{ sì} \ \Box \text{ no;} \inf f = \qquad \text{è il minimo?} \Box \text{ sì} \ \Box \text{ no;}$
$\operatorname{Im} f =$
B6.d) la derivata seconda, gli intervalli di convessità e gli eventuali flessi:
f''(x) =
f convessa in: f concava in:
punti di flesso in $x =$
B6.e) grafico: (nel foglio allegato) B6.f) dire poi se le seguenti affermazioni sono vere o false: • $f(x)$ è suriettiva \square vero \square falso • $f(x)$ è iniettiva \square vero \square falso • l'equazione $f(x) = 15$ ha esattamente 2 soluzioni \square vero \square falso

Analisi Matematica 1 (SNAMO): SECONDA PROVA INTRACORSO - 22/12/2022 - AM1-C	Traccia
Candidato (cognome, nome, matricola):	

Riportare le risposte sintetiche negli spazi appositi, scrivere lo svolgimento per esteso su fogli a parte che allegherete, indicando di volta in volta il numero dell'esercizio che state svolgendo. Sulla prima facciata di ogni foglio allegato, in alto al centro, scrivere

TRACCIA AM1-C, COGNOME, NOME E MATRICOLA.

Esercizio C1 (4 punti). Calcolare i limiti

C1.a)
$$\lim_{x \to +\infty} \frac{x^2 - e^{-x}}{\log(x^2) - 3x^2} =$$
 C1.b) $\lim_{x \to 0} \frac{\log(1 + 2x)}{1 - e^x} =$

Esercizio C2 (5 punti). Individuare il dominio naturale, calcolare i limiti alle estremità e scrivere le equazioni degli eventuali asintoti per la funzione di legge $f(x) = x \exp\left(\frac{1}{2-x}\right)$.

dominio:
$$\lim_{x \to \square} f(x) = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Esercizio C3 (5 punti). Dopo aver individuato il dominio naturale, trovare tutti i punti stazionari della funzione di legge $f(x) = \log \frac{(x-1)^2}{x-3}$ e classificarli.

dominio:				
punto stazionario:	\Box massimo	\Box minimo	\square flesso	\Box non so
punto stazionario:	\square massimo	\Box minimo	\square flesso	\Box non so
punto stazionario:	\square massimo	\square minimo	\square flesso	\square non so

Esercizio C4 (8 punti). Calcolare gli integrali indefiniti/definiti:

C4.a)
$$\int_{2}^{3} \frac{x^{2} - 6x}{x^{2} - 6x + 10} dx$$

C4.b)
$$\int \left(2x e^x - \cos(\frac{x}{2})\right) dx =$$

Esercizio C5 (7 punti). Data la legge $f(x) = x\sqrt[3]{(x-1)^2}$, rispondere ai seg	guenti quesiti <u>motivando le risposte</u>
C5.i) dominio naturale:	
C5.ii) derivata: $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1
C5.iii) equazione della retta tangente in $x = 0$:	
C5.iv) Le ipotesi del Teorema degli zeri sono soddisfatte in $[0,1]$ \square sì	no no
$C5.v)$ Le ipotesi del Teorema di Rolle sono soddisfatte in $[0,1]$ $\hfill \square$ sì	□ no
C5.vi) Le ipotesi del Teorema di Lagrange sono soddisfatte in $[0,2]$] sì □ no
Esercizio C6 (10 punti). Data la funzione di legge $f(x) = \frac{1+2x-3x^2}{x+2}$,	determinare
C6.a) il dominio naturale $dom(f) =$	
C6.b) la derivata, gli intervalli di monotonia e gli eventuali estremi relat	tivi:
f'(x) =	
f crescente in: f decrescente in:	
punti stazionari in $x =$	
punto di max. relativo in $x = $ punto di min. relativo i	$\mathbf{n} \ x =$
C6.c) i valori estremi assoluti (precisando se sono min/max) e l'immagi	ne:
$\sup f = \qquad \text{è il massimo?} \Box \text{ sì } \Box \text{ no;} \inf f = \qquad \text{è il min}$	imo? □ sì □ no;
$\mathrm{Im} f =$	
C6.d) la derivata seconda, gli intervalli di convessità e gli eventuali fless	i:
f''(x) =	
f convessa in: f concava in:	
punti di flesso in $x =$	
C6.e) grafico: (nel foglio allegato) C6.f) dire poi se le seguenti affermazioni sono vere o false: • $f(x)$ è suriettiva \square vero \square falso • $f(x)$ è iniettiva \square vero \square falso • l'equazione $f(x) = -5$ ha esattamente 2 soluzioni \square vero \square	□ falso