Applicazioni derivate

Segno della derivata in un punto

Siano f una funzione definita in X e $x_0 \in X$. Se f è dotata di derivata in x_0 allora

- $f'(x_0) > 0 \Rightarrow f$ strettamente crescente in x_0 ;
- $f'(x_0) < 0 \Rightarrow f$ strettamente decrescente in x_0 ;
- f'(x₀) = 0 ⇒ nulla si può dire sul comportamento della funzione.

Teorema di Fermat

Teorema di Fermat

Siano f una funzione definita in X, $x_0 \in X$. Se la funzione presenta un minimo (massimo) relativo in x_0 allora vale una delle due alternative seguenti:

- esiste la derivata in x_0 e $f'(x_0) = 0$;
- non esiste la derivata in x_0 .

Teorema di Rolle

Teorema di Rolle

Sia $f:[a,b]\to\mathbb{R}$. Se

- f è continua in [a, b]
- f è derivabile in]a, b[
- f(a) = f(b),

allora

$$\exists x_0 \in]a, b[: f'(x_0) = 0$$

Teorema di Lagrange

Teorema di Lagrange

Sia $f:[a,b]\to\mathbb{R}$. Se f è continua in [a,b] e derivabile in]a,b[, allora

$$\exists x_0 \in]a, b[: f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Corollari del Teorema di Lagrange

Teorema 1 (caratterizzazione delle funzioni costanti)

Una funzione è costante in un intervallo [a,b] se e solo se è derivabile in]a,b[e $f'(x)=0 \ \forall \ x\in]a,b[$.

Teorema 2 (criterio di monotonia)

Sia f una funzione continua in un intervallo [a, b] e derivabile in [a, b]. Allora

- f è crescente in [a,b] \Leftrightarrow $f'(x) \ge 0 \ \forall \ x \in]a,b[$.
- f è decrescente in $[a,b] \Leftrightarrow f'(x) \leq 0 \ \forall \ x \in]a,b[$.

Teorema 3 (criterio di stretta monotonia)

Una funzione derivabile in un intervallo [a,b] è strettamente crescente (decrescente) in tutto [a,b] se e solo se $f'(x) \ge 0 (\le 0) \ \forall \ x \in]a,b[$ ed inoltre, non esiste un intervallo $I \subset]a,b[$ nel quale la derivata sia identicamente nulla.

Derivate di ordine superiore

Derivata seconda

Sia f una funzione definita, continua e derivabile in X. Se la derivata f'(x) ammette derivata , essa si definisce **derivata seconda** di f e si indica con il simbolo f''.

Derivate di ordine superiore

Con considerazioni analoghe, è possibile definire le derivate di ordine superiore; in generale, con il simbolo $f^{(n)}$ si indica la derivata di ordine n.

Se $f^{(k)}(x_0) = 0$ k = 1, ..., n-1 allora:

```
n f^{(n)} pari positiva \Rightarrow x_0 punto di minimo relativo, pari negativa \Rightarrow x_0 punto di massimo relativo, dispari positiva \Rightarrow f strettamente crescente in x_0, dispari negativa \Rightarrow f strettamente decrescente in x_0.
```

f è continua in un intervallo chiuso e limitato [a, b] allora f è dotata di minimo e massimo:

$$\exists m = \min f, \ \exists M = \max f \Rightarrow$$

$$m \le f(x) \le M, \ \forall x \in [a,b].$$

Di conseguenza esistono

- **1** almeno un punto di minimo $x_m \in [a, b]$, $f(x_m) = m$;
- **2** almeno un punto di massimo $x_M \in [a, b], f(x_M) = M$.

Ricerca di massimi e minimi

Consideriamo una funzione definita in un intervallo, o, più in generale, in un insieme formato dall'unione di intervalli; supponiamo che essa derivabile in tutto il suo dominio, ad eccezione al più di un insieme finito di punti. I punti di minimo e massimo devono essere localizzati:

- agli estremi degli intervalli che compongono il dominio di f;
- nei punti di minimo e massimo relativo in cui
 - la funzione è derivabile e la derivata è nulla;
 - la funzione non è derivabile.

Ricerca di massimi e minimi

- valutazione della funzione negli estremi del campo di esistenza;
- calcolo della derivata
 - ricerca dei punti in cui la derivata si annulla e valutazione della funzione in corrispondenza dei punti suddetti;
 - individuazione dei punti in cui non esiste la derivata e valutazione della funzione in corrispondenza dei punti suddetti.

Il massimo ed il minimo della funzione, se esistono, sono dati, rispettivamente, dal massimo e dal minimo dei valori calcolati.

Esempio

Calcoliamo il massimo ed il minimo della funzione $e^x - x$ per $x \in [-2,3]$.

valutazione della funzione agli estremi:

$$f(-2) = e^{-2} + 2 \simeq 2.13, \ f(3) = e^{3} - 3 \simeq 17.08;$$

calcolo della derivata:

$$f'(x) = D[e^x - x] = e^x - 1$$

• ricerca dei punti in cui la derivata si annulla e valutazione della funzione in corrispondenza dei punti suddetti:

$$e^{x} - 1 = 0 \Leftrightarrow x = 0; f(0) = 1;$$

Esempio

La funzione ammette derivata in tutto il suo campo di esistenza. Posto

$$y_1 = f(-2) \simeq 2.13, \ y_2 = f(3) \simeq 17.08$$

si ha

$$\min f = \min\{y_1, y_2, 1\} \Rightarrow$$
 $\min f = 1, \ x = 0 \text{ punto di minimo}$
 $\max f = \max\{y_1, y_2, 1\} \Rightarrow$
 $\max f = y_2, \ x = 3 \text{ punto di massimo}$