INTRODUZIONE ALLA MATEMATICA

C.d.l. in Economia e Management

I Prova Intercorso - 4 novembre 2022

Cognome: _	 	 	
Nome:		 	
Matricola: _	 		

Domanda n.	1	2	3	4	5	6	7	8	9	10
Risposta										

1) Data una funzione $f: S \to T$, suriettiva in T, con $T =]-1, +\infty[$, si può affermare che

A)
$$\min_{x \in S} f(x) = -1 e \sup_{x \in S} f(x) = +\infty$$
.

B)
$$\inf_{x \in S} f(x) = -1 e \not\exists \min_{x \in S} f(x)$$
.

C)
$$\sup_{x \in S} f(x) = +\infty$$
 e f illimitata inferiormente.

2) Data a > 0 la funzione f definita mediante la legge $f(x) = a^x$, si può affermare che

- A) f ha immagine $[0, +\infty[$.
- B) f ha immagine $]-\infty, +\infty[$.
- C) f ha immagine $]0, +\infty[$.

3) Dati a > 0 e $a \ne 1$ la funzione $f:]0, +\infty[\to \mathbb{R}$ definita mediante la legge $f(x) = \log_a x$, si può affermare che

- A) f è crescente se a > 1.
- B) f è crescente se 0 < a < 1.
- C) f è decrescente se a > 1.

4) Data la funzione f definita mediante la legge

$$f(x) = \frac{\sqrt{x^2 + 1}}{x + 1}$$

denominato con E[f] il suo campo di esistenza si scelga un'alternativa:

A)
$$E[f] =]-\infty, -1[\cup]-1, +\infty[$$
.

B)
$$E[f] =] - \infty, +\infty[$$
.

C)
$$E[f] = [0, 1[\cup]1, +\infty[.$$

5) Dato il seguente limite

$$\lim_{x\to 2^+}\log_3(x^2-4)$$

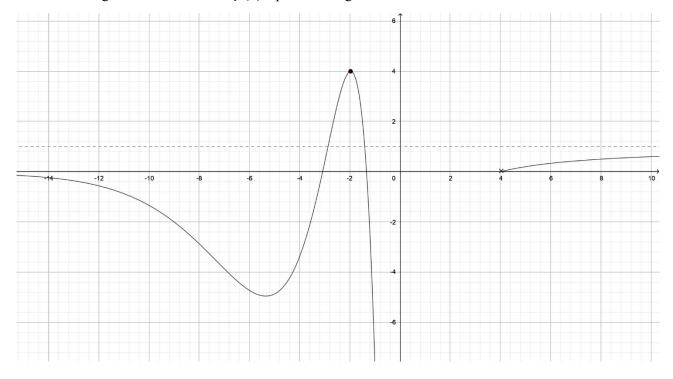
si può affermare che

A)
$$\lim_{x \to 2^+} \log_3(x^2 - 4) = -\infty$$
.

B)
$$\lim_{x \to 2^+} \log_3(x^2 - 4) = 0$$
.

C)
$$\lim_{x \to 2^+} \log_3(x^2 - 4) = +\infty$$
.

Si consideri il grafico della funzione f(x) riportato in figura.



- 6) Denominato con E[f] il campo di esistenza di f(x) e con Imf la sua immagine, si può affermare che
- A) $E[f] =]-\infty$, $0[\cup]0,4[\cup]4$, $+\infty[;$ $Imf =]-\infty,4]$.

$$Imf =]-\infty, 4].$$

B)
$$E[f] =] - \infty$$
, $0[\cup]4$, $+\infty[$;

$$Imf =]-\infty, 4[.$$

C)
$$E[f] =]-\infty$$
, $0[\cup]4$, $+\infty[$;

$$Im f =]-\infty, 4].$$

- 7) Facendo riferimento allo stesso grafico, si può affermare che
- A) f è biunivoca su \mathbb{R} .
- B) f è suriettiva su \mathbb{R} ma non è iniettiva.
- C) f non è suriettiva su \mathbb{R} né iniettiva.
- 8) Facendo riferimento allo stesso grafico, si può affermare che
- A) *f* ammette massimo assoluto.
- B) f è limitata inferiormente e illimitata superiormente.
- C) f è illimitata inferiormente e illimitata superiormente.
- 9) Facendo riferimento allo stesso grafico, si può affermare che
- A) f non ammette zeri.
- B) *f* ammette più di uno zero.
- C) f ammette un unico zero.
- 10) Facendo riferimento allo stesso grafico, si può affermare che

A)
$$\lim f(x) = -\infty$$
;

A)
$$\lim_{x \to -\infty} f(x) = -\infty$$
; $\lim_{x \to +\infty} f(x) = 1$.

B)
$$\lim_{x \to -\infty} f(x) = 0$$

B)
$$\lim_{x \to -\infty} f(x) = 0;$$
 $\lim_{x \to +\infty} f(x) = +\infty.$

C)
$$\lim_{x \to -\infty} f(x) = 0$$
; $\lim_{x \to +\infty} f(x) = 1$.

$$\lim_{x \to +\infty} f(x) = 1.$$

ESERCIZIO

Sia f la funzione definita mediante la seguente legge

$$f(x) = \log\left(\frac{x^2 - x - 2}{x - 3}\right)$$

- a) Determinare il campo di esistenza di f.
- b) Studiare il comportamento di f agli estremi del suo campo di esistenza.