INTRODUZIONE ALLA MATEMATICA

C.d.l. in Economia e Management

I Prova Intercorso - 4 novembre 2022

Cognome:	 	
Nome:	 	
Matricola:		

Domanda n.	1	2	3	4	5	6	7	8	9	10
Risposta										

1) Data una funzione $f: S \to T$, suriettiva in T, con T =]-1, 4], si può affermare che

A)
$$\min_{x \in S} f(x) = -1 e \not\equiv \max_{x \in S} f(x)$$
.

B)
$$\min_{x \in S} f(x) = -1 \ \text{e} \ \max_{x \in S} f(x) = 4.$$

C)
$$\not\exists \min_{x \in S} f(x) e \max_{x \in S} f(x) = 4.$$

2) Dati n, numero naturale dispari, e $f: \mathbb{R} \to \mathbb{R}$ la funzione definita mediante la legge $f(x) = x^n$, si può affermare che

- A) f è illimitata inferiormente e illimitata superiormente.
- B) f non è iniettiva né suriettiva.
- C) f è limitata inferiormente e illimitata superiormente.

3) Dati a > 1 e f la funzione definita mediante la legge $f(x) = a^x$, si può affermare che

A)
$$f(x) > 1 \text{ per } x \in]-\infty, 0[.$$

B)
$$f(x)$$
 < 1 per x ∈] $-\infty$, 0[.

C)
$$f(x) > 1$$
 per $x \in \mathbb{R}$.

4) Data la funzione f definita mediante la legge

$$f(x) = \frac{\log(x^2 - 4)}{x^2 + 2x + 7}$$

denominato con E[f] il suo campo di esistenza, si può affermare che

A)
$$E[f] =]2, +\infty[.$$

B)
$$E[f] =] - \infty, -2[\cup]2, +\infty[.$$

C)
$$E[f] =]-\infty, -2] \cup [2, +\infty[$$
.

5) Dato il seguente limite

$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^{\sqrt{x}+7x^3+4x^2}$$

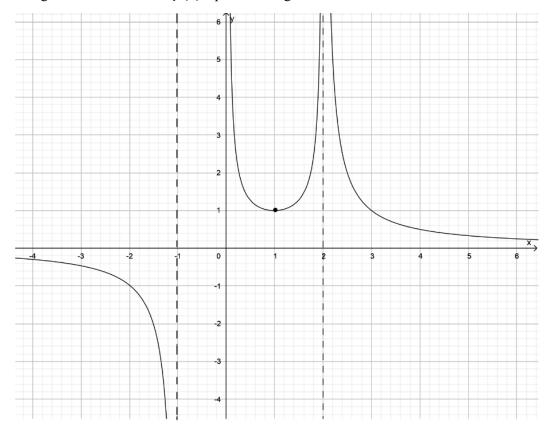
si può affermare che

$$\mathrm{A)}\lim_{x\to+\infty}\left(\frac{1}{2}\right)^{\sqrt{x}+7x^3+4x^2}=0.$$

B)
$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^{\sqrt{x}+7x^3+4x^2} = +\infty.$$

C)
$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^{\sqrt{x} + 7x^3 + 4x^2} = 1.$$

Si consideri il grafico della funzione f(x) riportato in figura.



6) Denominato con E[f] il campo di esistenza di f(x) e con Imf la sua immagine, si può affermare che

A)
$$E[f] =]-\infty, -1[\cup]0, 2[\cup]2, +\infty[;$$

$$Im f = \mathbb{R}$$
.

B)
$$E[f] =]-\infty, -1[\cup]0, +\infty[;$$

$$Imf =]-\infty$$
, $0[\cup]0$, $+\infty[$.

C)
$$E[f] =]-\infty, -1[\cup]0, 2[\cup]2, +\infty[;$$

$$Imf =]-\infty,0[\cup]0,+\infty[.$$

7) Facendo riferimento allo stesso grafico, si può affermare che

- A) f non è suriettiva su \mathbb{R} né iniettiva.
- B) f è suriettiva su \mathbb{R} ma non è iniettiva.
- C) f è biunivoca su \mathbb{R} .

8) Facendo riferimento allo stesso grafico, si può affermare che

- A) f è illimitata inferiormente e limitata superiormente.
- B) f è illimitata inferiormente e illimitata superiormente.
- C) f è limitata inferiormente e illimitata superiormente.

9) Facendo riferimento allo stesso grafico, si può affermare che

- A) f ammette un unico zero.
- B) *f* ammette più di uno zero.
- C) f non ammette zeri.

10) Facendo riferimento allo stesso grafico, si può affermare che

A)
$$\lim_{x \to -\infty} f(x) = -\infty$$
; $\lim_{x \to +2} f(x) = +\infty$.

$$\lim_{x \to \pm 2} f(x) = +\infty$$

B)
$$\lim_{x \to -\infty} f(x) = 0$$
;

$$\lim_{x \to +2} f(x) = +\infty.$$

C)
$$\lim_{x \to -\infty} f(x) = -\infty$$
; $\lim_{x \to +2} f(x) = 0$.

$$\lim_{x \to \pm 2} f(x) = 0$$

ESERCIZIO

Sia f la funzione definita mediante la seguente legge

$$f(x) = \sqrt{\frac{x+2}{x^2 + 4x - 5}}$$

- a) Determinare il campo di esistenza di f.
- b) Studiare il comportamento di f agli estremi del suo campo di esistenza.

Prova A