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Logistic Regression Model



Aim of the logistic regression

The basic idea of logistic regression (defined
as logit) is the creation of a non linear model
which identifies the main characteristics
with the aim to forecast sales, to measure
the potential market, to study consumer
behavior, consumer satisfaction and to
perform a market segmentation.



Aim of the logistic regression

The innovation is the use of a qualitative dependent
variable, dichotomous, taking value 1 if successful, 0
failure.

eg.: “buy” - “do not buy”

Encoded, respectively, with 1 (="buy" ) and 0 (=" do not
buyn )

Logistic regression model allows to estimate the
probability that the dependent variable can take one of two
extreme values (usually 1), instead of the value of the
variable

Example:
Estimate the probability (P) to occur the purchase of a

product, rather than adopt a linear regression model to
assess and predict product sales.



Technical problems

Dependent variables which assume only two

values: 0 e 1;

while the corresponding regression function can

assume all values in [— 0, + oo]



Logistic regression model

The /ogit model is defined by (in a multiple case):

+ &

where Y is a bernoulli random variable with P(Y=1]X)

Given the explanatory variables, Xj, and the logistic random variable
cdf (exp(XB)/1+exp(XP)), we can rewrite the previous equation as




Logistic regression model

Explanatory variables can be both quantitative, assuming all
values of real number interval, and dummy variables, which are

encoded in numerical values of 0 and 1 (dichotomous).



Transformation of P in odds
In order to estimate the probability that Y takes a given value,
and since
0< P< 1

It can be useful to transform the probabilities in likelihood ratios,

to obtain values greater than 1 \
o

odds

The “odds” is the ratio among the probability of a event P and its
complement to 1:




Transformation of odds in logit

A logarithmic transformation of the odds, defined
“logit”, allows to get dependent variable values greater
than one and lower than zero (negative).




Logit model

Remembering that:

I
.1 P(Y=1X =xX =X, X, =X, )= P B By +8i
The odds is:
............................................................................................................... gﬂ
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Parameter interpretation

[5]- can be interpreted as the logit variation due to the unite

increase of the explanatory variable x,

— It does not exist relationship between x; and the probability
that Yis 1, 3=0

— It there exist a positive relationship between x; and the
probability that Y is 1, >0

—If there exist a negative relationship between x; and the
probability that Y is 1, 3,<0



Parameter estimation method

The main hypothesis is the absence of multicollinearity .

The method used to estimate the parameter vector is the maximum
likelihood method.

This method is based on the maximization of the known likelihood
function that maximizes the probability of observing the set of sample

data in function of f.

Since:

y~bernulliana(p)

the probability function for the i-th observation is:

f(yilx;B)=P” (1- P)"



Parameter estimation

The log-likelihood of the observed sample (of size n), “L()”, is
given by the product of all log-likelihoods corresponding to
sample units and it is function of 3 parameters

n
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To obtain the maximum likelihood parameter vector 3, we
estimate the B values which maximize the logarithm of L(B).

To maximize the expression, we tmpose the partial derivative, with
respect to the paraweters, equal to zero awnd, thew, awn iterative

estimation procedure is required.




Goodness of fit

Hy: 31 =P =...= B = 0 (no relationship)
Hi: By # B # ... # B # 0 (at least one coefficient is different from zero)
r I I L] I I I L] I I I L] I I I L] I I I 1

|G = dev(modellof) — dev(modello completo) = -ZlogLL((g)) =-2log LR]

This statistical test is the difference between the deviance of the model
with only the intercept and the deviance of the model analysed.

LR (Likelihood Ratio) assumes values near 1 when the explanatory
variables of the model are not significant and G is near 0; on the
contrary, LR assumes values near 0 if the variables are significant, G
value is high.



Goodness of fit

It has been showed that:

G -~ Z/?—l

Where k= number of explanatory variables
If G is greater of critical value, HO is rejected (with a given

a level)



Cox and Snell index

It ranges between 0 (if the estimated model does not
provide information than the intercept-only one) and its

maximum
To make the index moving between 0 and 1:

Nagelkerke’s index



HO: [3]=0
Hy: 3;#0

We use Wald’s test (W):

Estimation of 3

Standard error of b

In multivariate case:
Maximum likelihood estimation vector

of B
Inverse of covariance matrix of

coefficients

If greater than critical value of 2 (with given o) Hyis
rejected



Example: probability of purchasing

To estimate the probability of buying a snack (1=yes, 0=no):
— Average number of pieces purchased in a month
— Age of respondents

— Exposure to advertising (dummy: 1= yes, I have seen the tv

advertisement, 0=no)

We can use the following logistic regression model



Iteration Histor§®¢

-2 Log Coefficients |
lteration likelihood | Constant 5
Step 0 1 41.18 ,000 R~ R

a. Constant is included in the model.
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Model Summary

-2 Log Cox & Snell | Nagelkerke
Step likelihood R Square R Square

1 2578 0.3821 0.5278
a. Estimation terminated 4t iteration number 4 becquse
paragheter estimates changed by less than ,001.

Values high enough that confirm the significance of the model
adopted!



L) _

G =-2log - 5 —2log L(0) = (=2log L(f))

G=41.18-25.78=15.40

2
v’ =7.81
) . .
G> y~ rejection of H,
Omnibus Tests of Model Coefficients
Chi-square df Sig.
Step 1 Step 15.40 3 0.0015
Block 15.40 3 0.0015
Model 15.40 3 0.0015

K parameters = 4
K-1 explanatory variables = 3
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Variables in the Equation

B S.E. Wald df Siq. Exp(B)

Step  Average 2.826 1.263 5.007 11 0.025 16.878
1 Age 0.095 0.142 0.452 1 0.50 1.100
Advertising 2.379 1.065 4.993 1 0.025 10.794
Constant -13.020 4.931 6.972 1| 0.008 0.000

a. Variable(s) entered on step 1: pezziacquistati, eta, ef f ettopubbl.

Wald’s test states the significance of all parameters, except age (Sig >0.05).

Exp(p) is the increase of odds —ratio with respect to unit increases of Xj



EXP(B) = e®
e.g.:
For unit increments of age, from 22 to 23 years

The odds-ratio is

_—

The b value states that a unit change of age has a positive impact on both, the odds-
ratio (>1) and the probability of y=I.

If X increases of a single unit, the odds-ratio may be equal to:
1 = does not exist relationship between P(Y) and Xj, b=0

>1 positive impact of Xj on P(Y), b>0

<1 negative impact of Xj on P(Y), b<0



From odds to P

- - bo+bxy +box 4. 45 (b +bixy +byxy +otbprg) |
1+ o0dds 1+ e00tbaxat by 1+ e (bg+D1x1+by x5 kxk)l



If a subject of 22 years which buys on average 3 snacks per month and has
seen on the tv the advertisement of the brand

The probability of purchasing the snack of this brand is 48%



