MDS for individual differences

The models analyzed are based on a single proximity
wmatrix obtained as sywthesis of all the individual
evaluations expressed by the Lnterviewees.

This s equivalent to the hypothesis that the differences
betweew the subjects are randow.

with the MDS for tndividual differences we treat these
differences tn a systematic way: the distances between
points in a space with common to all swbjects dimensions
may be systematically different, due to different
weights given by each subject to the dimensions
(attributes)




1 II
”H MDS for individual differences

The objeo’c'we ls to peroei\/e some change Lwn
market trend

we tnterview a small number of people, able to
recelve any changes that will occur on the
market

Tgpicauﬁ, market analysts or cowsumptiow
psychologists are chosen!
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'l
I”H MDS for individual differences
(Carrol, Clwang)

Basic assumptions: the geometric space (set of

common.  dimensions R)  shared by all
individuals anol evaluation oifferences

(distances) are due to the welght given to the
dimensions of the common area

A olissimiLarita matrix for each interviewed
su.b\jeo’c




Wcighted Euclidean Model (WEM)

A = proximitg matrix of gq subjects (W x nx q)

t s a summary of the evaluations of g subjeots (we
have g matrices) )

X, = coordinate matrix given by the t-th subject with
respect to all dimensions with generic element:

Xie = coordinate of L-th element given on s by t




Wcighted Euclidean Model (WEM)

The generic coordinate of X, can be expressed as:
Kist — KXWy
where w; is the weight given to s by t
The distance between two evaluations on brands/products (i
awdj) given ba t onw R dimensions [s=1,..R] Ls :
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Wcighted Euclidean Model (WEM)

In matrix notation

O... = dijt — {(xi _ xj)'Wt(xi _ xj)}1/2

1]t




1 II
l“ ‘ OUTPUT WEM

ncludes

1) X (nxR) = coordinate watrix for all
subjects tn a common map,

2) W(kxq)=Iwi,wz,..wt, ..wql weight matrix
of q subjects for k dimensions;

2) qoodwness of fit measure




We estimate the coordinates in the same way of
metric MDS

WEM

R = X W, X’ t=1,...,9

R (sy mmetric) can be obtained after the estimation of
wWit:

wt = AMA’

This a];rro,ach deals with Torgerson wodel, where the
proxtmity ts equal to distance




EmpirioaLLg, we can not assume the equaLL’cH between
distance and proximitg, but we can tmpose a functlon:

o = £ (i) + <

Modello Euclideo Ponderato (WEM)

ALl popular algorithms  start  from an  initial
configuration. (or by Torgerson wodel), for which,
kinown coordinates and distances, it is possible to
estimate the weights with nown-linear regression. Such
weights allow to determine a wew configuration (new
coordinates) that wminimizes the difference between
distances and proximity (defined by the value of ij) ...




Modello Euclideo Ponderato (WEM)

The algorithms mostly used are INDSCAL (which
maximlzes RS®R) and ALSCAL (which minimizes
the S-STRESS)

They are used for both metric and non-metric data

N.B. There s wno orthogownal rotation of obtained
dimensions!




INDSCAL (metric)

The objective is to wmaximize RS®R, the square

correlation

RSQ =1
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coeffictent between distances
dissimilarities
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It can use the square correlation coefficlent between
distances and disparities

INDSCAL (non metric)
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The obj

ALSCAL (metric)

S-STRESS = |
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ALSCAL (non metric)

Or minimizes the following, for mon metric data

S-STRESS = «
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ALGORITHM

The prpcedure works for successive iteratioms, until
reaching a convergence criterton:

For a givem configuration X, determine the weights wt
and the coordinates of the system of g equations expressed
i matrix form dt = XwtX', by the method of nonlinear
least squares.

These welghts are used to determine a new configuration
that minimizes S-STRESS (or maximizing the RSR)
with respect to that calewlated for the previous
configuration and iteratively, until it vreaches the
minimum value (or another stopping rule)




lnterareting the comciguration

Simultaneous explanation of the waps
relating to the common coordinates space
(products/brands) and to the common space of
welghts (subjects)

It is how to evaluate the solutions of a single
matrix of a metric MBS, taking tnto account
the welghts of the k dimensions given by the
subjects




what configurations are more similar to each other?

Evaluating the wetght space:

Join the points-space coordinates of the weights with the
origin (vectors): all points that lie on the same vector have
the same relative weights

Determine vector module (sum of the welght squares) to

check the goodwness of fit of the wodel with respect to
dissimilarity indices
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H Inter reting the con{:iguration

)

n order to measure the difference between wetghts we
have to estimate the angular separation between the

corresponding weitght vectors

The swaller the wore swmailar arve evaluatiowns
assigwed to dimensions

validity of the comparison: same module (Length of
the vectors)




Interpreting the confi guration

The Lmportance attributeol bg each subjeot to a

dimension is provided by the value of its coordinate on
that dimension:

the higher the value, the greater the contribution of the
subject to the determination of that dimension.

Minor results, therefore, the angle formed by the
dimension and by the "weirght" vector.




I

The subject 1 assigns
higher  importance to
dimension k2

1

The subject 2 assigns
higher  importance to
dimension k1

N




Weight matrix for subject A, B and C

o |Dimension 2

Dimension 1



III”H CONDITIONAL PROXIMITY




III
”H CONDITIONAL PROXIMITY

FOR A DIMENSION1 IS MORE IMPORTANT OF 1,8 (0,90/0,50) THAN
DIMENSION 2!

FoRrR B DIMENSION 1 Is 0,6 (0,45/0,75) TIMES DIMENSION 2

A ASSIGNS TO DIMENSION 1, RELATIVE TO DIMENSION 2, A WEIGHT 3
TIMES (1,8/0,6) HIGHER THAN THAT GIVEN BY B







III ‘
T

BOTH MALES FEMALES EVALUATE MORE SIMILAR BASKETBALL-
VOLLEYBALL AND MORE DISSIMILAR SKI-VOLLEY

m 0,052 0,990
f 0,064 0,984

Minimum STRESS and RSQ close
tol

The values indicate a more
satisfactory for males than for
females Il




Dinension 2

PERCEPTIVE MAP
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|I|”H

Subject Weights

Dimension

Weirdness 1 2

m ,0330 ,9640 ,2453

f ,0317 ,9547 ,2689
Overall importance of each dimension:
,9204  ,0662

Males have attributed to the dimension 1 a weight four times higher
(3.93=0.964 / 0.2453) to that given to the dimension 2

The females have provided the dimension 1 a weight 3.55 times
greater (0.9547 / 0.2689) than that given to the dimension 2

Comparing the two groups, the males have given a weight to the
dimension 1 relative to dimension 2, 1.11 (= 3.93 / 3.55) times higher
than that assigned by females!




|I|”H

Subject Weights

Dimension

Weirdness 1 2

I=-m ,0330 ,9640 ,2453
2=f ,0317 ,9547 ,2689
Overall importance of each dimension:
,9204  ,0662

Weirdness index verifies if the weights given are typical:
W=0 typical

W=1 atypical

In the table

Wm = 0,033 e Wf =0,0317 the weights are typical
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Distance

Scatter-plot to fit a linear relationship
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