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Logistic Regression Model



Aim of the logistic regression

The basic idea of logistic regression (defined
as logit) is the creation of a non linear model
which identifies the main characteristics
with the aim to forecast sales, to measure
the potential market, to study consumer
behavior, consumer satisfaction and to
perform a market segmentation.



Aim of the logistic regression
The innovation is the use of a qualitative dependent
variable, dichotomous, taking value 1 if successful, 0
failure.

eg.: “buy” – “do not buy”

Encoded, respectively, with 1 ( = "buy" ) and 0 ( = " do not
buy" )
Logistic regression model allows to estimate the
probability that the dependent variable can take one of two
extreme values (usually 1), instead of the value of the
variable
Example:
Estimate the probability (P) to occur the purchase of a
product, rather than adopt a linear regression model to
assess and predict product sales.



Technical problems

Dependent variables which assume only two

values: 0 e 1;

while the corresponding regression function can

assume all values in [ ]¥+¥-  ,



Logistic regression model

The logit model is defined by (in a multiple case):

where Y is a bernoulli random variable with P(Y=1|X)

Given the explanatory variables, Xj, and the logistic random variable
cdf (exp(Xb)/1+exp(Xb)), we can rewrite the previous equation as
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Logistic regression model

Explanatory variables can be both quantitative, assuming all

values of real number interval, and dummy variables, which are

encoded in numerical values of 0 and 1 (dichotomous).



Transformation of P in odds
In order to estimate the probability that Y takes a given value,
and since

It can be useful to transform the probabilities in likelihood ratios,
to obtain values greater than 1

1    P    0 ≤≤

odds

The “odds” is the ratio among the probability of a event P and its
complement to 1:

P
Podds
–1
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Transformation of odds in logit

A logarithmic transformation of the odds, defined
“logit”, allows to get dependent variable values greater
than one and lower than zero (negative).
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Logit model
Remembering that:

The odds is:
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Then, the LOGIT (P) allows to get a linear regression model:
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Parameter interpretation 

βj can be interpreted as the logit variation due to the unite
increase of the explanatory variable xj

– If does not exist relationship between xj and the probability
that Y is 1, βj=0

– If there exist a positive relationship between xj and the
probability that Y is 1, βj>0

– If there exist a negative relationship between xj and the
probability that Y is 1, βj<0

'εxβ...xβxββ)P(Logit kk22110 +++++=



The main hypothesis is the absence of multicollinearity .

The method used to estimate the parameter vector is the maximum

likelihood method.

This method is based on the maximization of the known likelihood

function that maximizes the probability of observing the set of sample

data in function of β.

Since:

the probability function for the i-th observation is:

Parameter estimation method
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The log-likelihood of the observed sample (of size n), “L(β)”, is
given by the product of all log-likelihoods corresponding to
sample units and it is function of β parameters

To obtain the maximum likelihood parameter vector β, we
estimate the β values which maximize the logarithm of L(β).

To maximize the expression, we impose the partial derivative, with
respect to the parameters, equal to zero and, then, an iterative
estimation procedure is required.

Parameter estimation
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H0: β1 = β2 = …= βk = 0 (no relationship)
H1: β1 ≠ β2 ≠ … ≠ βk ≠ 0 (at least one coefficient is different from zero)

This statistical test is the difference between the deviance of the model
with only the intercept and the deviance of the model analysed.

LR (Likelihood Ratio) assumes values near 1 when the explanatory
variables of the model are not significant and G is near 0; on the
contrary, LR assumes values near 0 if the variables are significant, G
value is high.

Goodness of fit

LR
L
LdevdevG log2
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It has been showed that:

Where k= number of explanatory variables 

If G is greater of critical value, H0 is rejected (with a given 

a level)

Goodness of fit

2
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It ranges between 0 (if the estimated model does not
provide information than the intercept-only one) and its
maximum
To make the index moving between 0 and 1:

Goodness of fit
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Cox and Snell index

Nagelkerke’s index



H0: βj = 0
H1: βj ≠ 0

We useWald’s test (W):

Wald’s test
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Standard error of b

Maximum likelihood estimation vector
of βBVBW 1' -=

In multivariate case:

Inverse of covariance matrix of
coefficients

Estimation of β

2
1c»W ~ If greater than critical value of χ2 (with given a) H0 is

rejected



Example: probability of purchasing

To estimate the probability of buying a snack (1=yes, 0=no):

– Average number of pieces purchased in a month

– Age of respondents

– Exposure to advertising (dummy: 1= yes, I have seen the tv

advertisement, 0=no)

We can use the following logistic regression model
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Model with constant
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Iteration Historya,b,c

13,863 ,000
Iterat ion

1Step 0

-2 Log
likelihood Constant

Coeff icients

Constant is included in the model.a. 

Initial -2 Log Likelihood: 13,863b. 

Est imat ion terminated at iterat ion number 1 because
parameter estimates changed by less than ,001.

c. 

)0(log2 L-
41.18
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Model Summary

12,056a ,165 ,220
Step
1

-2 Log
likelihood

Cox & Snell
R Square

Nagelkerke
R Square

Est imat ion terminated at iterat ion number 4 because
parameter estimates changed by less than ,001.

a. 
25.78 0.3821 0.5278

Values high enough that confirm the significance of the model 
adopted!
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Goodness of fit
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Omnibus Tests of Model Coefficients

1,806 3 ,614
1,806 3 ,614
1,806 3 ,614

Step
Block
Model

Step 1
Chi-square df Sig.

40.1 578.2 518.4 1 =-=G

K parameters = 4
K-1 explanatory variables = 3

0H of rejection G

.
2

2 817

c

c

>
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Sig values lead to 
rejection of H0, 

15.40
15.40
15.40

0.0015
0.0015
0.0015

Significance of all parameters



Significance of single parameter

ng)(advert isi,(Age), p ieces)average(,,1))rchaseLogit(P(pu 3 7 920 9 508 2 620 2 01 3 +++==

Variables in the Equation

1,111 2,218 ,251 1 ,617 3,036 ,039 234,728
,110 ,358 ,094 1 ,759 1,116 ,553 2,253

-1,407 1,626 ,750 1 ,387 ,245 ,010 5,922
-5,255 5,789 ,824 1 ,364 ,005

pezziacquistati
eta
ef fettopubbl(1)
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B) Lower Upper
95,0% C.I. for EXP(B)

Variable(s) entered on step 1: pezziacquistati, eta, ef f ettopubbl.a. 

Wald’s test states the significance of all parameters, except age (Sig >0.05).

Exp(β) is the increase of odds –ratio with respect to unit increases of Xj

2.826
0.095
2.379

-13.020

1.263
0.142
1.065
4.931

5.007
0.452
4.993
6.972

0.025
0.50

0.025
0.008

16.878
1.100

10.794
0.000

Average 
piecesAge

Advertising



EXP(B) = eb

e.g.:

For unit increments of age, from 22 to 23 years

The odds-ratio is

)1(379,2)22(095,0)(2826,2020,13 +++-= eodds
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The b value states that a unit change of age has a positive impact on both, the odds-
ratio (>1) and the probability of y=1.
RULE:
If X increases of a single unit, the odds-ratio may be equal to:
1 =  does not exist relationship between P(Y) and Xj, b=0
>1  positive impact of Xj on P(Y), b>0
<1  negative impact of Xj on P(Y), b<0
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From odds to P 
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Probability

48.0
1

1
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P

If a subject of 22 years which buys on average 3 snacks per month and has 
seen on the tv the advertisement of the brand 

The probability of purchasing the snack of this brand is 48%
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