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Introduction

The regression is a techwnique of statistical
analysis that has the aim to identify the
relationship between a dependent variable and
owne or a set of explanatory variables

‘SIMPLE REGRESSION Y=1(x)

‘MULTIPLE REGRESSION  Y=1(X, X ... %)



It expresses a linear relationship between a dependent variable

(Y) and a set of explanatory variables (X1 ) or regressors.

k explanatory variables
error= normal random
variable

Intercept

Regression
coefficients

Y; =B + B, X +B, X, . B X g
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Assumptions of multiple regression wodlel

Y; =Py + B Xy + P, X+ P Xy + €

Linear relationship between Y and X

Nown-stochastic explanatory variables X;

The expected value of the ervor s — E(g) =0

The ervor variance is finite and constant (homoskedasticity)
E(g g)=0c” forall {

The ervors are wot rvelated —COV (g, & ) = E(g, €_.)=0
for all L and K

The ervors are normally distributed— N (0, 6?)

The regressors are not related to each other — wo
multicollinearity 5



Estimated value for Intercept Regression coefficient

predicted dependent estimation estimations
variable

Y =b,+bX,+b,X, +...4+b X,



EXAMPLE WITH
TWO

EXPLANATORY [Y%
VARIABLES Y*=b,+bX,+b,X,
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Imposing the derivative with respect to the k coefficients equal to zero
(b), we obtain the estimation of betas:

ee=(y—Xb)'(y—-Xb)=y'y—y'Xb-b'X"y+b" X' Xb =
=y'y=2b'X"y+b' X' Xb

8(;?6) = 2X'y+2X' Xb=0

min,(e'e)=

then
b=(X' X' X'y
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To verity the significance of each parameter included in the model
Hy: B; =0 (the variable X has no influence on Y)
H;: 3;#0

Under the hypothesis of normally distributed errors, the statistical
test is

~t,« where S,=Standard Error of f3;

\) b
The null hypothesis will be rejected (accepted) if ¢, is outside the
range delimitated by the tabulated values of Student’t distribution

corresponding to +/- t o



R-S qua Ve

lw ovder to verify the goodness of fit of the wodel, we Look at =R
square value, given by the following formulations

 DEV(R) SSR Z(yi ~7)

- DEV(Y) SST > (y-¥)

R2

Or, equivalentely, b Y

T
DEV(E) | SSE Z(yi i)

R*=1- =]l-——=1-
DEV(Y)  SST > (=)
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Adj usted R-square

R-square inereases with the wuwmber of explanatory variables
bncluded tn the wmodel. To avold this effect it is corvected in the

following way

SST /n—1 n—k

n= sample size
R= number of parameters
Adj usted R2 is less than =2

lt is used in the comparison between regression. models with the
same dependent variable and a different number of explanatory

variables
13



F- test on all regression coefficients

Check the overall goodness of fit of a model, simultaneausly, on all regression
coefficients

Ho: Bi=p2=...= pj=...=Px=0 (thereis no linear relationship between Y e le Xi)

H;: otherwise (at least one explanatory variable Xi influence Y)

2
DEVR) SSR/k—1 o
k-1 - o
55K k-1 DEV(Ey SSE/in—k = 2 Fignx
9

The null hypothesis will therefore be rejected ( accepted ) if the sample statistics F
is higher ( lower ) than the Fisher’s distribution quantile corresponding to the
significance level imposed by the test ( F, x 1)
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Based own the decomposition of the total deviance ( SST ) in
deviance of regression (SSR ) and of the ervor ( SSE ) You can
build a statistical test that wverifies, through inferential
techniques , the overall adjustment of a Linear wmodel to original
data

ANOVA G.L SS P-value F

: — Probability is lower
R K-1 SSR BRUELESS A G Y YA ) S
egression / / than 0.05, then we

Residual n-k SSE RN FAE ¢ have to reject the

null hypothesis

Total n-1 SST MST=SST/n-1
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MuLtiaoLLimaritgj

MaLn MLASUres:

Mudltiple square correlation coefficient R and the
vartance nflation Factors (VIF)obtained by wmeans
of auxiliary regressions between each regressor ana
the other R-2

VIF =

1-R?

J

High multicollinearity in presence of RAvalues greater
thawn 0,7 where VIF>=3,5
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=2 and VIF

J

R, |VIF
0 1
0,5 |2
0,6 |25
0,7 |35
0,8 |5
0,9 |10
0,95 |50
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Solution wethods of multicollinearity

1. ldentify the explanatory variable ( or the
variables ) Linear combination of the
other, and delete it |

2. lnerease, if Lt is possible , the w sample
observations

3. lnerease , if it ks possible , the nunber of
(EQeSSOrs
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Testing the assuwmptions of the model:

Linearity
()

— LLneayr remtimsmp between Y ano each XL

Independence among restouals
- null corvelation among restuals

Normality of residuals

- normal distribution of vesiduals

Howmoskedasticity of restduals

~ Finlte and constant variance of residuals




LINEARITY

scatter plot X vs Y

dscatter  plot  restduals  (studentized) vs  predicted
values (standardized)

Hcorrelation coeffictent and R? between each X and Y

If the relationship is wot Llinear
QAdopt Linear transformations (Logarithmic) of data




