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Multivariate Statistical Analysis

Multiple linear regression
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Introduction

The regression is a technique of statistical 

analysis that has the aim to identify the 

relationship between a dependent variable and 

one or a set of explanatory variables

•SIMPLE REGRESSION          Y=f(X)

•MULTIPLE REGRESSION     Y=f(X1,X2,…Xk)
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Multiple linear regression model

It expresses a linear relationship between a dependent variable 
(Y) and a set of explanatory variables (Xi ) or regressors.

iikki22i110i εXβXβXββY +++++= 

k explanatory variables

Intercept Regression 
coefficients 

error=  normal random 
variable
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Assumptions of multiple regression model

iikki22i110i εXβXβXββY +++++= 

1. Linear relationship between Y and Xi
2. Non-stochastic explanatory variables Xi
3. The expected value of the error  is        E(εi)=0
4. The error variance is finite and constant(homoskedasticity)  

E(εi εi)=σ2   for all i
5. The errors  are not related       COV(εi, εi-k) = E(εi, εi-k)=0  

for all i and K
6. The errors are normally distributed         N(0, σ2)
7.  The regressors are not related to each other         no 

multicollinearity
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Multiple linear regression equation

ikki22i110
*
i XbXbXbbY ++++= 

Estimated  value for 
predicted dependent 
variable

Regression coefficient 
estimations

Intercept 
estimation
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EXAMPLE WITH 
TWO 
EXPLANATORY 
VARIABLES

Y

X1

X2

22110 XbXbbY* ++=

Slope fo
r v

aria
ble X 1

Slope for variable X2

Graphical representation 
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Matrix notation
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Ordinary Least-Squares (OLS)

eb += Xy

Xby =*

Xb*yye =-=

å --== )Xby()'Xby(e'ee 2i
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Imposing the derivative with respect to the k coefficients equal to zero 
(b), we obtain the estimation of betas:

y'XX)(X'b
then

0Xb'X2y'X2
b
)e'e()e'e(min

Xb'X'by'X'b2y'y
Xb'X'by'X'bXb'yy'y)Xby()'Xby(e'e
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Ordinary Least-Squares (OLS)



Under the hypothesis of normally distributed errors, the statistical 
test is

~ tn-k where  Sb=Standard  Error of βj

                                                                                                                
b

j

S
b

T-test on individual  regression coefficient
To verify the significance of each parameter included in the model 

   H0:  βj = 0 (the variable X  has no influence on Y)

   H1:  βj ≠ 0

The null hypothesis will be rejected (accepted) if tn-k is outside the 

range delimitated by the tabulated values of Student’t distribution

corresponding to +/- t n-k, α/2
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R-square
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In order to verify the goodness of fit of the model, we look at R
square value, given by the following formulations

Or, equivalentely, by
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Adjusted R-square

R-square increases with the number of explanatory variables
included in the model. To avoid this effect it is corrected in the
following way

n= sample size

k= number of parameters

Adjusted R2 is less than R2

It is used in the comparison between regression models with the
same dependent variable and a different number of explanatory
variables

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ==

kn
nR

nSST
knSSER

–
1–)–1(–1

1–/
–/-1 22



Check the overall goodness of fit of a model, simultaneausly, on all regression
coefficients

   H0:  β1 = β2 = … =  βj  = … = βk = 0  (there is no linear relationship between Y e le Xi)

   H1:  otherwise (at least one explanatory variable Xi influence Y)

SST  ~  

SSR ~  

SSE ~
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F- test on all regression coefficients

The null hypothesis will therefore be rejected ( accepted ) if the sample statistics F
is higher ( lower ) than the Fisher’s distribution quantile corresponding to the
significance level imposed by the test ( Fα ,k , n-k )

~ ~ Fk;n-k
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ANOVA(ANalysis Of Variance)

Based on the decomposition of the total deviance ( SST ) in
deviance of regression ( SSR ) and of the error ( SSE ) you can
build a statistical test that verifies, through inferential
techniques , the overall adjustment of a linear model to original
data .

ANOVA G.L SS MS F P-value F

Regression K-1 SSR MSR=SSR/k-1 MSR/MSE Probability is lower 
than 0.05, then we 
have to reject the 

null hypothesis
Residual n-k SSE MSE=SSE/n-k

Total n-1 SST MST=SST/n-1
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Multicollinearity

Main measures:

Multiple square correlation coefficient Rj2 and the 
Variance Inflation Factors (VIF)obtained by means 
of auxiliary regressions between each regressor and 
the other k-2

21
1

jR
VIF

-
=

High multicollinearity in presence of R2values greater 
than 0,7 where VIF>=3,5



17

Rj
2 and VIF

RJ
2 VIF

0 1

0,5 2

0,6 2,5

0,7 3,5

0,8 5

0,9 10

0,95 50
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1. Identify the explanatory variable ( or the 
variables ) linear combination of the 
other, and delete it ! 

2. Increase , if it is possible , the n sample 
observations 

3. Increase , if it is possible , the number of 
regressors

Solution methods of multicollinearity



Testing the assumptions of the model:

• Linearity

– Linear relationship between Y and each Xi

• Independence among residuals

- null correlation among residuals 

• Normality of residuals

– normal distribution of residuals

• Homoskedasticity of residuals 

– Finite and constant variance of residuals



LINEARITY 

qscatter plot X vs Y

qScatter plot residuals (studentized) vs predicted
values(standardized)

qCorrelation coefficient and R2 between each X and Y

If the relationship is not linear

qAdopt linear transformations (logarithmic) of data


