
1Introduction andFramework

Statistics is a collection of methods which help us to describe, summarize, interpret,
and analyse data. Drawing conclusions from data is vital in research, administra-
tion, and business. Researchers are interested in understanding whether a medical
intervention helps in reducing the burden of a disease, how personality relates to
decision-making, whether a new fertilizer increases the yield of crops, how a polit-
ical system affects trade policy, who is going to vote for a political party in the
next election, what are the long-term changes in the population of a fish species,
and many more questions. Governments and organizations may be interested in the
life expectancy of a population, the risk factors for infant mortality, geographical
differences in energy usage, migration patterns, or reasons for unemployment. In
business, identifying people who may be interested in a certain product, optimizing
prices, and evaluating the satisfaction of customers are possible areas of interest.

No matter what the question of interest is, it is important to collect data in a
way which allows its analysis. The representation of collected data in a data set or
data matrix allows the application of a variety of statistical methods. In the first
part of the book, we are going to introduce methods which help us in describing
data, and the second and third parts of the book focus on inferential statistics, which
means drawing conclusions from data. In this chapter, we are going to introduce the
framework of statistics which is needed to properly collect, administer, evaluate, and
analyse data.

1.1 Population, Sample, and Observations

Let us first introduce some terminology and related notations used in this book.
The units on which we measure data—such as persons, cars, animals, or plants—
are called observations. These units/observations are represented by the Greek
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4 1 Introduction and Framework

symbol ω. The collection of all units is called population and is represented by Ω .
When we refer toω ∈ Ω , wemean a single unit out of all units, e.g. one person out of
all persons of interest. If we consider a selection of observationsω1,ω2, . . . , ωn , then
these observations are called sample. A sample is always a subset of the population,
{ω1, ω2, . . . ,ωn} ⊆ Ω .

Example 1.1.1

• If we are interested in the social conditions under which Indian people live, then
we would define all inhabitants of India asΩ and each of its inhabitants as ω. If we
want to collect data from a few inhabitants, then those would represent a sample
from the total population.

• Investigating the economic power of Africa’s platinum industry would require to
treat each platinum-related company asω, whereas all platinum-related companies
would be collected in Ω . A few companies ω1, ω2, . . . ,ωn comprise a sample of
all companies.

• We may be interested in collecting information about those participating in a
statistics course. All participants in the course constitute the population Ω , and
each participant refers to a unit or observation ω.

Remark 1.1.1 Sometimes, the concept of a population is not applicable or difficult
to imagine. As an example, imagine that we measure the temperature in New Delhi
every hour. A sample would then be the time series of temperatures in a specific
time window, for example from January to March 2016.A population in the sense of
observational units does not exist here.But nowassume thatwemeasure temperatures
in several different cities; then, all the cities form the population, and a sample is any
subset of the cities.

1.2 Variables

If we have specified the population of interest for a specific research question, we
can think of what is of interest about our observations. A particular feature of these
observations can be collected in a statistical variable X . Any information we are
interested in may be captured in such a variable. For example, if our observations
refer to human beings, X may describe marital status, gender, age, or anything else
which may relate to a person. Of course, we can be interested in many different
features, each of them collected in a different variable Xi , i = 1, 2, . . . , p. Each
observation ω takes a particular value for X . If X refers to gender, each observation,
i.e. each person, has a particular value x which refers to either “male” or “female”.

The formal definition of a variable is

X : Ω → S
ω �→ x

(1.1)
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This definition states that a variable X takes a value x for each observation ω ∈ Ω ,
whereby the number of possible values is contained in the set S.

Example 1.2.1

• If X refers to gender, possible x-values are contained in S = {male, female}. Each
observation ω is either male or female, and this information is summarized in X .

• Let X be the country of origin for a car. Possible values to be takenby anobservation
ω (i.e. a car) are S = {Italy,South Korea,Germany,France, India,China, Japan,
USA, . . .}.

• A variable X which refers to age may take any value between 1 and 125. Each
person ω is assigned a value x which represents the age of this person.

1.2.1 Qualitative and QuantitativeVariables

Qualitative variables are the variables which take values x that cannot be ordered in
a logical or natural way. For example,

• the colour of the eye,
• the name of a political party, and
• the type of transport used to travel to work

are all qualitative variables. Neither is there any reason to list blue eyes before brown
eyes (or vice versa) nor does it make sense to list buses before trains (or vice versa).

Quantitative variables represent measurable quantities. The values which these
variables can take can be ordered in a logical and natural way. Examples of quanti-
tative variables are

• size of shoes,
• price for houses,
• number of semesters studied, and
• weight of a person.

Remark 1.2.1 It is common to assign numbers to qualitative variables for practical
purposes in data analyses (see Sect. 1.4 for more detail). For instance, if we consider
the variable “gender”, then each observation can take either the “value” male or
female. We may decide to assign 1 to female and 0 to male and use these numbers
instead of the original categories. However, this is arbitrary, and we could have also
chosen “1” for male and “0” for female, or “2” for male and “10” for female. There
is no logical and natural order on how to arrange male and female, and thus, the
variable gender remains a qualitative variable, even after using numbers for coding
the values that X can take.
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1.2.2 Discrete and ContinuousVariables

Discrete variables are variables which can only take a finite number of values.
All qualitative variables are discrete, such as the colour of the eye or the region of
a country. But also quantitative variables can be discrete: the size of shoes or the
number of semesters studied would be discrete because the number of values these
variables can take is limited.

Variables which can take an infinite number of values are called continuous
variables. Examples are the time it takes to travel to university, the length of an
antelope, and the distance between two planets. Sometimes, it is said that continuous
variables are variables which are “measured rather than counted”. This is a rather
informal definition which helps to understand the difference between discrete and
continuous variables. The crucial point is that continuous variables can, in theory,
take an infinite number of values; for instance, the height of a personmay be recorded
as 172 cm.However, the actual height on themeasuring tapemight be 172.3cmwhich
was rounded off to 172 cm. If one had a better measuring instrument, we may have
obtained 172.342 cm. But the real height of this person is a number with indefinitely
many decimal places such as 172.342975328…cm. No matter what we eventually
report or obtain, a variable which can take an infinite amount of values is defined to
be a continuous variable.

1.2.3 Scales

The thoughts and considerations from above indicate that different variables contain
different amounts of information. A useful classification of these considerations is
given by the concept of the scale of a variable. This concept will help us in the
remainder of this book to identify which methods are the appropriate ones to use in
a particular setting.

Nominal scale. The values of a nominal variable cannot be ordered. Examples are
the gender of a person (male–female) or the status of an application (pending–not
pending).

Ordinal scale. The values of an ordinal variable can be ordered. However, the differ-
ences between these values cannot be interpreted in a meaningful way. For exam-
ple, the possible values of education level (none–primary education–secondary
education–university degree) can be ordered meaningfully, but the differences
between these values cannot be interpreted. Likewise, the satisfactionwith a prod-
uct (unsatisfied–satisfied–very satisfied) is an ordinal variable because the values
this variable can take can be ordered, but the differences between “unsatisfied–
satisfied” and “satisfied–very satisfied” cannot be compared in a numerical way.

Continuous scale. The values of a continuous variable can be ordered. Furthermore,
the differences between these values can be interpreted in a meaningful way. For
instance, the height of a person refers to a continuous variable because the values
can be ordered (170 cm, 171 cm, 172 cm, …), and differences between these
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values can be compared (the difference between 170 and 171cm is the same
as the difference between 171 and 172 cm). Sometimes, the continuous scale is
divided further into subscales. While in the remainder of the book we typically
do not need these classifications, it is still useful to reflect on them:

Interval scale. Only differences between values, but not ratios, can be interpreted.
An example for this scale would be temperature (measured in ◦C): the difference
between −2 ◦C and 4 ◦C is 6 ◦C, but the ratio of 4/ − 2 = −2 does not mean that
−4 ◦C is twice as cold as 2 ◦C.

Ratio scale. Both differences and ratios can be interpreted. An example is speed:
60 km/h is 40 km/h more than 20 km/h. Moreover, 60 km/h is three times faster
than 20 km/h because the ratio between them is 3.

Absolute scale. The absolute scale is the same as the ratio scale, with the excep-
tion that the values are measured in “natural” units. An example is “number of
semesters studied” where no artificial unit such as km/h or ◦C is needed: the
values are simply 1, 2, 3, . . ..

1.2.4 Grouped Data

Sometimes, data may be available only in a summarized form: instead of the original
value, one may only know the category or group the value belongs to. For example,

• it is often convenient in a survey to ask for the income (per year) by means of
groups: [e0–e20,000), [e20,000–e30,000), . . ., > e100,000;

• if there are many political parties in an election, those with a low number of voters
are often summarized in a new category “Other Parties”;

• insteadof capturing the number of claimsmadeby an insurance company customer,
the variable “claimed” may denote whether or not the customer claimed at all
(yes–no).

If data is available in grouped form, we call the respective variable capturing
this information a grouped variable. Sometimes, these variables are also known as
categorical variables. This is, however, not a complete definitionbecause categorical
variables refer to any type of variable which takes a finite, possibly small, number of
values. Thus, any discrete and/or nominal and/or ordinal and/or qualitative variable
may be regarded as a categorical variable. Any grouped or categorical variable which
can only take two values is called a binary variable.

To gain a better understanding on how the definitions from the above sections
relate to each other see Fig. 1.1. Qualitative data is always discrete, but quantitative
data can be both discrete (e.g. size of shoes or a grouped variable) and continuous
(e.g. temperature). Nominal variables are always qualitative and discrete (e.g. colour
of the eye), whereas continuous variables are always quantitative (e.g. temperature).
Categorical variables can be both qualitative (e.g. colour of the eye) and quantitative
(satisfaction level on a scale from 1 to 5). Categorical variables are never continuous.
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Fig. 1.1 Summary of variable classifications

1.3 Data Collection

When collecting data, we may ask ourselves how to facilitate this in detail and
how much data needs to be collected. The latter question will be partly answered
in Sect. 9.5; but in general, we can think of collecting data either on all subjects of
interest, such as in a national census, or on a representative sample of the population.
Most commonly, we gather data on a sample (described in the Part I of this book) and
then draw conclusions about the population of interest (discussed in the Part III of
this book). A sample might either be chosen by us or obtained through third parties
(hospitals, government agencies), or created during an experiment. This depends on
the context as described below.

Survey. A survey typically (but not always) collects data by asking questions (in
person or by phone) or providing questionnaires to study participants (as a printout
or online). For example, an opinion poll before a national election provides evidence
about the future government: potential voters are asked by phonewhich party they are
going to vote for in the next election; on the day of the election, this information can
be updated by asking the same question to a sample of voters who have just delivered
their vote at the polling station (so-called exit poll). A behavioural research survey
may ask members of a community about their knowledge and attitudes towards drug
use. For this purpose, the study coordinators can send people with a questionnaire
to this community and interview members of randomly selected households.

Ideally, a survey is conducted in a way which makes the chosen sample repre-
sentative of the population of interest. If a marketing company interviews people in
a pedestrian zone to find their views about a new chocolate bar, then these people

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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may not be representative of those who will potentially be interested in this product.
Similarly, if students are asked to fill in an online survey to evaluate a lecture, it
may turn out that those who participate are on average less satisfied than those who
do not. Survey sampling is a complex topic on its own. The interested reader may
consult Groves et al. (2009) or Kauermann and Küchenhoff (2011).

Experiment. Experimental data is obtained in “controlled” settings. This can mean
many things, but essentially it is data which is generated by the researcher with full
control over one or many variables of interest. For instance, suppose there are two
competing toothpastes, both ofwhich promise to reduce pain for peoplewith sensitive
teeth. If the researcher decided to randomly assign toothpaste A to half of the study
participants, and toothpaste B to the other half, then this is an experiment because
it is only the researcher who decides which toothpaste is to be used by any of the
participants. It is not decided by the participant. The data of the variable toothpaste
is controlled by the experimenter. Consider another example where the production
process of a product can potentially be reduced by combining two processes. The
management could decide to implement the newprocess in three production facilities,
but leave it as it is in the other facilities. The production process for the different
units (facilities) is therefore under control of the management. However, if each
facility could decide for themselves if they wanted a change or not, it would not be
an experiment because factors not directly controlled by themanagement, such as the
leadership style of the facility manager, would determine which process is chosen.

Observational Data. Observational data is data which is collected routinely, without
a researcher designing a survey or conducting an experiment. Suppose a blood sample
is drawn from each patient with a particular acute infection when they arrive at a
hospital. This data may be stored in the hospital’s folders and later accessed by a
researcher who is interested in studying this infection. Or suppose a government
institution monitors where people live and move to. This data can later be used to
explore migration patterns.

Primary and Secondary Data. Primary data is data we collect ourselves, i.e. via a
survey or experiment. Secondary data, in contrast, is collected by someone else. For
example, data from a national census, publicly available databases, previous research
studies, government reports, historical data, and data from the internet, among others,
are secondary data.

1.4 Creating a Data Set

There is a unique way in which data is prepared and collected to utilize statistical
analyses. The data is stored in a data matrix (=data set) with p columns and n rows
(see Fig. 1.2). Each row corresponds to an observation/unit ω and each column to
a variable X . This means that, for example, the entry in the fourth row and second
column (x42) describes the value of the fourth observation on the second variable.
The examples below will illustrate the concept of a data set in more detail.
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⎛
⎜⎜⎜⎝

ω Variable 1 Variable 2 · · · Variable p

1 x11 x12 · · · x1p
2 x21 x22 · · · x2p

...
...

...
...

n xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠

Fig. 1.2 Data set or data matrix

⎛
⎜⎜⎜⎝

ω Music Mathematics Biology Geography
StudentA 65 70 85 45
StudentB 77 82 80 60
StudentC 78 73 93 68
StudentD 88 71 63 58
StudentE 75 83 63 57

⎞
⎟⎟⎟⎠

Fig. 1.3 Data set of marks of five students

Example 1.4.1 Suppose five students take examinations inmusic,mathematics, biol-
ogy, and geography. Their marks, measured on a scale between 0 and 100 (where
100 is the best mark), can be written down as illustrated in Fig. 1.3. Note that each
row refers to a student and each column to a variable. We consider a larger data set
in the next example.

Example 1.4.2 Consider the data set described in AppendixA.4. A pizza delivery
service captures information related to each delivery, for example the delivery time,
the temperature of the pizza, the name of the driver, the date of the delivery, the
name of the branch, and many more. To capture the data of all deliveries during one
month, we create a data matrix. Each row refers to a particular delivery, therefore
representing the observations of the data. Each column refers to a variable. In Fig. 1.4,
the variables X1 (delivery time in minutes), X2 (temperature in ◦C), and X12 (name
of branch) are listed.

⎛
⎜⎜⎜⎝

Delivery Delivery Time Temperature · · · Branch
1 35.1 68.3 · · · East (1)
2 25.2 71.0 · · · East (1)
...

...
...

...
1266 35.7 60.8 · · · West (2)

⎞
⎟⎟⎟⎠

Fig. 1.4 Pizza data set
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Table 1.1 Coding list for
branch

Variable Values Code

Branch East 1

West 2

Centre 3

Missing 4

The first row tells us about the features of the first pizza delivery: the delivery
time was 35.1 min, the pizza arrived with a temperature of 68.3 ◦C, and the pizza
was delivered from the branch in the East of the city. In total, there were n = 1266
deliveries. For nominal variables, such as branch, wemay decide to produce a coding
list, as illustrated in Table1.1: instead of referring to the branches as “East”, “West”,
and “Centre”, we may simply call them 1, 2, and 3. As we will see in Chap.11, this
has benefits for some analysis methods, though this is not needed in general.

If some values are missing, for example because they were never captured or even
lost, then this requires special attention. In Table1.1, we assign missing values the
number “4” and therefore treat them as a separate category. If weworkwith statistical
software (see below), we may need other coding such as NA in the statistical software
R or in Stata. More detail can be found in AppendixA.

Another consideration when collecting data is that of transformations: we may
have captured the velocity of cars in kilometres per hour, but may need to present
the data in miles per hour; we have captured the temperature in degrees Celsius,
whereas we need to communicate results in degrees Fahrenheit, or we have created a
satisfaction score which we want to range from −5 to +5, while the score currently
runs from 0 to 20. This is not a problem at all. We can simply create a new variable
which reflects the required transformation. However, valid transformations depend
on the scale of a variable. Variables on an interval scale can use transformations of
the following kind:

g(x) = a + bx, b > 0. (1.2)

For ratio scales, only the following transformations are valid:

g(x) = bx, b > 0. (1.3)

In the above equation, a is set to 0 because ratios only stay the same if we respect a
variable’s natural point of origin.

Example 1.4.3 The temperature in ◦F relates to the temperature in ◦C as follows:

Temperature in ◦F = 32 + 1.8 Temperature in ◦C
g(x) = a + b x

This means that 25 ◦C relates to (32 + 1.8 · 25) ◦F = 77 ◦F. If X1 is a variable
representing temperature by ◦C, we can simply create a new variable X2 which is
temperature in ◦F. Since temperature is measured on an interval scale, this transfor-
mation is valid.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Changing currencies is also possible. If we would like to represent the price of a
product not in South African Rand but in e, we simply apply the transformation

Price in South African Rand = b · Price in e

whereby b is the currency exchange rate.

1.4.1 Statistical Software

There are number of statistical software packages which allow data collection, man-
agement, and–most importantly–analysis. In this book, we focus on the statistical
software R which is freely available at http://cran.r-project.org/. A gentle introduc-
tion to R is provided in AppendixA. A data matrix can be created manually using
commands such as matrix(), data.frame(), and others. Any data can be edited
using edit(). However, typically analysts have already typed their data into data-
bases or spreadsheets, for example in Excel, Access, or MySQL. In most of these
applications, it is possible to save the data as an ASCII file (.dat), as a tab-delimited
file (.txt), or as a comma-separated values file (.csv). All of these formats allow easy
switching between different software and database applications. Such data can easily
be read into R by means of the following commands:

setwd('C:/directory')
read.table('pizza_delivery.dat')
read.table('pizza_delivery.txt')
read.csv('pizza_delivery.csv')

where setwd specifies the working directory. Alternatively, loading the library
foreign allows the import of data from many different statistical software pack-
ages, notably Stata, SAS, Minitab, SPSS, among others. A detailed description of
data import and export can be found in the respective R manual available at http://
cran.r-project.org/doc/manuals/r-release/R-data.pdf. Once the data is read into R,
it can be viewed with

fix() # option 1
View() # option 2

Wecan also can get an overview of the data directly in the R-console by displaying
only the top lines of the data with head(). Both approaches are visualized in Fig. 1.5
for the pizza data introduced in Example 1.4.2.

http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf
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Fig. 1.5 Viewing data in R

1.5 Key Points and Further Issues

Note:

� The scale of variables is not only a formalism but an essential framework
for choosing the correct analysis methods. This is particularly relevant
for association analysis (Chap.4), statistical tests (Chap.10), and linear
regression (Chap.11).

� Even if variables are measured on a nominal scale (i.e. if they are cate-
gorical/qualitative), we may choose to assign a number to each category
of this variable. This eases the implementation of some analysismethods
introduced later in this book.

� Data is usually stored in a data matrix where the rows represent the
observations and the columns are variables. It can be analysed with
statistical software. We use R (R Core Team 2016) in this book. A
gentle introduction is provided in AppendixA and throughout the book.
A more comprehensive introduction can be found in other books, for
example in Albert and Rizzo (2012), Crawley (2013), or Ligges (2008).
Even advanced books, e.g. Adler (2012) or Everitt and Hothorn (2011),
can offer insights to beginners.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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1.6 Exercises

Exercise 1.1 Describe both the population and the observations for the following
research questions:

(a) Evaluation of the satisfaction of employees from an airline.
(b) Description of the marks of students from an assignment.
(c) Comparison of two drugs which deal with high blood pressure.

Exercise 1.2 A national park conducts a study on the behaviour of their leopards.
A few of the park’s leopards are registered and receive a GPS device which allows
measuring the position of the leopard. Use this example to describe the following
concepts: population, sample, observation, value, and variable.

Exercise 1.3 Which of the following variables are qualitative, and which are quan-
titative? Specify which of the quantitative variables are discrete and which are
continuous:

Time to travel to work, shoe size, preferred political party, price for a canteen meal, eye
colour, gender, wavelength of light, customer satisfaction on a scale from 1 to 10, delivery
time for a parcel, blood type, number of goals in a hockey match, height of a child, subject
line of an email.

Exercise 1.4 Identify the scale of the following variables:

(a) Political party voted for in an election
(b) The difficulty of different levels in a computer game
(c) Production time of a car
(d) Age of turtles
(e) Calender year
(f) Price of a chocolate bar
(g) Identification number of a student
(h) Final ranking at a beauty contest
(i) Intelligence quotient.

Exercise 1.5 Make yourself familiar with the pizza data set from AppendixA.4.

(a) First, browse through the introduction to R in AppendixA. Then, read in the
data.

(b) View the data both in the R data editor and in the R console.
(c) Create a new data matrix which consists of the first 5 rows and first 5 variables

of the data. Print this data set on the R console. Now, save this data set in your
preferred format.

(d) Add a new variable “NewTemperature” to the data set which converts the tem-
perature from ◦C to ◦F.
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(e) Attach the data and list the values from the variable “NewTemperature”.
(f) Use “?” to make yourself familiar with the following commands: str, dim,

colnames, names, nrow, ncol, head, and tail.Apply these commands
to the data to get more information about it.

Exercise 1.6 Consider the research questions of describing parents’ attitudes towards
immunization, what proportion of themwants immunization against chicken pox for
their last-born child, and whether this proportion differs by gender and age.

(a) Which data collection method is the most suitable one to answer the above
questions: survey or experiment?

(b) Howwould you capture the attitudes towards immunization in a single variable?
(c) Which variables are needed to answer all the above questions? Describe the scale

of each of them.
(d) Reflect on what an appropriate data set would look like. Now, given this data

set, try to write down the above research questions as precisely as possible.

→ Solutions to all exercises in this chapter can be found on p. 321



2FrequencyMeasures andGraphical
RepresentationofData

In Chap. 1, we highlighted that different variables contain different levels of informa-
tion. When summarizing or visualizing one or more variable(s), it is this information
which determines the appropriate statistical methods to use.

Suppose we are interested in studying the employment opportunities and starting
salaries of university graduates with a master’s degree. Let the variable X denote the
starting salaries measured in e/year. Now suppose 100 graduate students provide
their initial salaries. Let us write down the salary of the first student as x1, the
salary of the second student as x2, and so on. We therefore have 100 observations
x1, x2, . . . , x100. How canwe summarize those 100 values best to extract meaningful
information from them? The answer to this question depends upon several aspects
like the nature of the recorded data, e.g. how many observations have been obtained
(either small in number or large in number) or how the data was recorded (either
exact values were obtained or the values were obtained in intervals). For example, the
starting salaries may be obtained as exact values, say 51,500 e/year, 32,350 e/year,
etc. Alternatively, these values could have been summarized in categories such as low
income (<30,000 e/year), medium income (30,000–50,000 e/year), high income
(50,000–70,000e/year), and very high income (>70,000e/year). Another approach
is to ask whether the students were employed or not after graduating and record the
data in terms of “yes” or “no”. It is evident that the latter classification is less detailed
than the grouped income datawhich is less detailed than the exact data. Depending on
which conceptualization of “starting salary” we use, we need to choose the approach
to summarize the data, that is the 100 values relating to the 100 graduated students.

2.1 Absolute and Relative Frequencies

Discrete Data. Let us first consider a simple example to illustrate our notation.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_2
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Example 2.1.1 Suppose there are ten people in a supermarket queue. Each of them
is either coded as “F” (if the person is female) or “M” (if the person is male). The
collected data may look like

M, F, M, F, M, M, M, F, M, M.

There are now two categories in the data: male (M) and female (F).We use a1 to refer
to themale category and a2 to refer to the female category. Since there are sevenmale
and three female students, we have 7 values in category a1, denoted as n1 = 7, and 3
values in category a2, denoted as n2 = 3. The number of observations in a particular
category is called the absolute frequency. It follows that n1 = 7 and n2 = 3 are the
absolute frequencies of a1 and a2, respectively. Note that n1 + n2 = n = 10, which
is the same as the total number of collected observations. We can also calculate
the relative frequencies of a1 and a2 as f1 = f (a1) = n1

n = 7
10 = 0.7 = 70% and

f2 = f (a2) = n2
n = 3

10 = 0.3 = 30%, respectively. This gives us information about
the proportions of male and female customers in the queue.

We now extend these concepts to a general framework for the summary of data
on discrete variables. Suppose there are k categories denoted as a1, a2, . . . , ak
with n j ( j = 1, 2, . . . , k) observations in category a j . The absolute frequency n j is
defined as the number of units in the j th category a j . The sumof absolute frequencies
equals the total number of units in the data:

∑k
j=1 n j = n. The relative frequencies

of the j th class are defined as

f j = f (a j ) = n j

n
, j = 1, 2, . . . , k. (2.1)

The relative frequencies always lie between 0 and 1 and
∑k

j=1 f j = 1.

GroupedContinuousData. Data on continuous variables usually has a large number
(k) of different values. Sometimes k may even be the same as n and in such a case
the relative frequencies become f j = 1

n for all j . However, it is possible to define
intervals in which the observed values are contained.

Example 2.1.2 Consider the following n = 20 results of the written part of a driving
licence examination (a maximum of 100 points could be achieved):

28, 35, 42, 90, 70, 56, 75, 66, 30, 89, 75, 64, 81, 69, 55, 83, 72, 68, 73, 16.

We can summarize the results in class intervals such as 0–20, 21–40, 41–60, 61–80,
and 81–100, and the data can be presented as follows:

Class intervals 0–20 21–40 41–60 61–80 81–100
Absolute frequencies n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative frequencies f1 = 1
20 f2 = 3

20 f3 = 3
20 f4 = 9

20 f5 = 5
20

We have
∑5

j=1 n j = 20 = n and
∑5

j=1 f j = 1.



2.1 Absolute and Relative Frequencies 19

Table 2.1 Frequency distribution for discrete data

Class intervals (a j ) a1 a2 ... ak

Absolute frequencies (n j ) n1 n2 ... nk

Relative frequencies ( f j ) f1 f2 ... fk

Now, suppose the n observations can be classified into k class intervals
a1, a2, . . . , ak , where a j ( j = 1, 2, . . . , k) contains n j observationswith

∑k
j=1 n j =

n. The relative frequency of the j th class is f j = n j/n and
∑k

j=1 f j = 1. Table 2.1
displays the frequency distribution of a discrete variable X .

Example 2.1.3 Consider the pizza delivery service data (Example 1.4.2, Appen-
dix A.4). We are interested in the pizza deliveries by branch and generate the respec-
tive frequency table, showing the distribution of the data, using the table command
in R (after reading in and attaching the data) as

table(branch) # absolute frequencies
table(branch)/length(branch) # relative frequencies

a j Centre East West
n j 421 410 435

f j
421
1266 ≈ 0.333 410

1266 ≈ 0.323 435
1266 ≈ 0.344

We have n = ∑
j n j = 1266 deliveries and

∑
j f j = 1. We can see from this table

that each branch has a similar absolute number of pizza deliveries and each branch
contributes to about one-third of the total number of deliveries.

2.2 Empirical Cumulative Distribution Function

Another approach to summarize and visualize the (frequency) distribution of vari-
ables is the empirical cumulative distribution function, often abbreviated as
“ECDF”. As the name itself suggests, it gives us an idea about the cumulative rela-
tive frequencies up to a certain point. For example, say we want to know how many
people scored up to 60 points in Example 2.1.2. Then, this can be calculated by
adding the number of people in the class intervals 0–20, 21–40, and 41–60, which
corresponds to n1 + n2 + n3 = 1 + 3 + 3 = 7 and is the cumulative frequency. If
we want to know the relative frequency of people obtaining up to 60 points, we have
to add the relative frequencies of the people in the class intervals 0–20, 21–40, and
41–60 as f1 + f2 + f3 = 1

20 + 3
20 + 3

20 = 7
20 .

http://dx.doi.org/10.1007/978-3-319-46162-5_1
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Before discussing the empirical cumulative distribution function in amore general
framework, let us first understand the concept of ordered values. Suppose the values
of height of four people are observed as x1 = 180 cm, x2 = 160 cm, x3 = 175 cm,
and x4 = 170 cm. We arrange these values in an order, say ascending order, i.e. first
the smallest value (denoted as x(1)) and lastly the largest value (denoted as x(4)). We
obtain

x(1) = x2 = 160 cm, x(2) = x4 = 170 cm,

x(3) = x3 = 175 cm, x(4) = x1 = 180 cm.

The values x(1), x(2), x(3), and x(4) are called ordered values for which x(1) < x(2) <
x(3) < x(4) holds. Note that x1 is not necessarily the smallest value but x(1) is
necessarily the smallest value. In general, if we have n observations x1, x2, . . . , xn ,
then the ordered data is x(1) ≤ x(2) ≤ · · · ≤ x(n).

Consider n observations x1, x2, . . . , xn of a variable X , which are arranged in
ascending order as x(1) ≤ x(2) ≤ · · · ≤ x(n) (and are thus on an at least ordinal scale).
The empirical cumulative distribution function F(x) is defined as the cumulative
relative frequencies of all values a j , which are smaller than, or equal to, x :

F(x) =
∑

a j≤x

f (a j ). (2.2)

This definition implies that F(x) is a monotonically non-decreasing function, 0 ≤
F(x) ≤ 1, limx→−∞ F(x) = 0 (the lower limit of F is 0), limx→+∞ F(x) = 1 (the
upper limit of F is 1), and F(x) is right continuous.

2.2.1 ECDF for Ordinal Variables

The empirical cumulative distribution function of ordinal variables is a step function.

Example 2.2.1 Consider a customer satisfaction survey from a car service company.
The 200 customers who had a car service done within the last 30 days were asked to
respond regarding their overall level of satisfaction with the quality of the car service
on a scale from 1 to 5 based on the following options: 1 = not satisfied at all, 2 =
unsatisfied, 3 = satisfied, 4 = very satisfied, and 5 = perfectly satisfied. Based on
the frequency of each option, we can calculate the relative frequencies and then
plot the empirical cumulative distribution function, either manually (takes longer)
or by using R (quick):

Satisfaction level (a j ) j = 1 j = 2 j = 3 j = 4 j = 5
n j 4 16 90 70 20
f j 4/200 16/200 90/200 70/200 20/200
Fj 4/200 20/200 110/200 180/200 200/200
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Fig. 2.1 ECDF for the satisfaction survey

The Fj ’s are calculated as follows:

F1 = f1, F3 = f1 + f2 + f3,

F2 = f1 + f2, F4 = f1 + f2 + f3 + f4.

The ECDF for this data can be obtained by summarizing the data in a vector and
using the plot.ecdf() function in R, see Fig. 2.1:

sv <- c(rep(1,4),rep(2,16),rep(3,90),rep(4,70),rep(5,20))
plot.ecdf(sv)

The ECDF can be used to obtain the relative frequencies for values contained in
certain intervals as

H(c ≤ x ≤ d) = relative frequency of values x with c ≤ x ≤ d.

It further follows that:

H(x ≤ a j ) = F(a j ) (2.3)

H(x < a j ) = H(x ≤ a j ) − f (a j ) = F(a j ) − f (a j ) (2.4)

H(x > a j ) = 1 − H(x ≤ a j ) = 1 − F(a j ) (2.5)

H(x ≥ a j ) = 1 − H(X < a j ) = 1 − F(a j ) + f (a j ) (2.6)

H(a j1 ≤ x ≤ a j2) = F(a j2) − F(a j1) + f (a j1) (2.7)

H(a j1 < x ≤ a j2) = F(a j2) − F(a j1) (2.8)

H(a j1 < x < a j2) = F(a j2) − F(a j1) − f (a j2) (2.9)

H(a j1 ≤ x < a j2) = F(a j2) − F(a j1) − f (a j2) + f (a j1) (2.10)
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Example 2.2.2 Suppose, in Example 2.2.1, we want to know how many customers
are not satisfied with their car service. Then, using the data relating to the responses
“1” and “2”, we observe from the ECDF that (16 + 4)/200% = 10% of the cus-
tomers were not satisfied with the car service. This relates to using rule (2.3):
H(X ≤ 2) = F(2) = 0.1 or 10 %. Similarly, the proportion of customers who are
more than satisfied can be obtained using (2.5) as H(X > 3) = 1 − H(x ≤ 3) =
1 − 110/200 = 0.45% or 45 %.

2.2.2 ECDF for ContinuousVariables

In general, we can apply formulae (2.2)–(2.10) to continuous data as well. However,
before demonstrating their use, let us consider a somewhat different setting. Let us
assume that a continuous variable of interest is only available in the form of grouped
data. We may assume that the observations within each group, i.e. each category
or each interval, are distributed uniformly over the entire interval. The ECDF then
consists of straight lines connecting the lower and upper values of the ECDF in each
of the intervals. To understand this concept inmore detail, we introduce the following
notation:

k number of groups (or intervals),
e j−1 lower limit of j th interval,
e j upper limit of j th interval,
d j = e j − e j−1 width of the j th interval,
n j number of observations in the j th interval.

Under the assumption that all values in a particular interval are distributed uni-
formly within this interval, the empirical cumulative distribution function relates to a
polygonal chain connecting the points (0, 0),

(
e1, F(e1)

)
,
(
e2, F(e2)

)
, . . . , (ek, 1).

The ECDF can then be defined as

F(x) =

⎧
⎪⎨

⎪⎩

0, x < e0

F(e j−1) + f j
d j

(x − e j−1), x ∈ [e j−1, e j )

1, x ≥ ek

(2.11)

with F(e0) = 0. The idea behind (2.11) is presented in Fig. 2.2. For any interval
[e j−1, e j ), the respective lower and upper limits of the ECDF are F(e j ) and F(e j−1).
If we assume values to be distributed uniformly over this interval, we can connect
F(e j ) and F(e j−1) with a straight line. To obtain F(x) with x > e j−1 and x < e j ,
we simply add the height of the ECDF between F(e j−1) and F(x) to F(e j−1).

Example 2.2.3 Consider Example 2.1.3 of the pizza delivery service. Suppose we
are interested in determining the distribution of the pizza delivery times. Using
the function plot.ecdf() in R, we obtain the ECDF of the continuous data, see
Fig. 2.3a. Note that the structure of the curve is a step function but now almost looks
like a continuous curve. The reason for this is that when the number of observations is
large, then the lengths of class intervals become small. When these small lengths are
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Fig. 2.2 Illustration of the
ECDF for continuous data
available in groups/intervals∗

ej−1

F (ej−1)

ejx

F (x)

dj

fj

joined together, they appear like a continuous curve. As the number of observations
increases, the smoothness of the curve increases too. If the number of observations
is not large, e.g. suppose the data is reported as a summary from the drivers, i.e.
whether the delivery took<15 min, between 15 and 20 min, between 20 and 25 min,
and so on, then we can construct the ECDF by creating a table summarizing the data
features as in Table 2.2.

Figure 2.3b shows the ECDF based on the grouped data evaluated in Table 2.2. It
is interesting to see that the graphs emerging from the use of the grouped data and
ungrouped data are similar in this specific example.

Suppose we are interested in calculating how many deliveries were completed
within the desired time limit of 30 min, with a tolerance of maximum 10 %
deviation, i.e. a deviation of 3 min. We can evaluate the ECDF at x = 33 min.

Table 2.2 The values needed to calculate the ECDF for the grouped pizza delivery time data in
Example 2.2.3

Delivery time j e j−1 e j n j f j F(e j )

[0; 10] 1 0 10 0 0.0000 0.0000

(10; 15] 2 10 15 3 0.0024 0.0024

(15; 20] 3 15 20 21 0.0166 0.0190

(20; 25] 4 20 25 75 0.0592 0.0782

(25; 30] 5 25 30 215 0.1698 0.2480

(30; 35] 6 30 35 373 0.2946 0.5426

(35; 40] 7 35 40 350 0.2765 0.8191

(40; 45] 8 40 45 171 0.1351 0.9542

(45; 50] 9 45 50 52 0.0411 0.9953

(50; 55] 10 50 55 6 0.0047 1.0000
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(b) Grouped continuous data

Fig. 2.3 Empirical cumulative distribution function for pizza delivery time

Based on (2.11),we calculate H(X ≤ 33) = F(33) = F(30) + f (6)/5(33 − 30) =
0.2480 + 0.2946/5 · 3 = 0.42476. Thus, we conclude, based on the grouped data,
that only about 42 % of the deliveries were completed in the desired time frame.

2.3 Graphical Representation of aVariable

Frequency tables and empirical cumulative distribution functions are useful in provid-
ing a numerical summary of a variable. Graphs are an alternative way to summarize
a variable’s information. In many situations, they have the advantage of conveying
the information hidden in the data more compactly. Similarly, someone’s mood can
bemore easily understood when looking at a smiley © than by reading an essay about
one’s mood in a long paragraph.

2.3.1 Bar Chart

A simple tool to visualize the relative or absolute frequencies of observed values of
a variable is a bar chart. A bar chart can be used for nominal and ordinal variables,
as long as the number of categories is not very large. It consists of one bar for each
category. The height of each bar is determined by either the absolute frequency or
the relative frequency of the respective category and is shown on the y-axis. If the
variable is measured on an ordinal level, then it is recommended to arrange the bars
on the x-axis according to their ranks or values. If the number of categories is large,
then the number of bars will be large too and the bar chart, in turn, may not remain
informative.
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Fig. 2.4 Bar charts

Example 2.3.1 Consider Example 2.1.1 inwhich ten people, queueing in a supermar-
ket, were classified as being either male (M) or female (F). The absolute frequencies
for males and females are n1 = 7 and n2 = 3, respectively. Since there are two cate-
gories,M and F, two bars are needed to construct the chart—one for themale category
and another for the female category. The heights of the bars are determined as either
n1 = 7 and n2 = 3 or f1 = 0.7 and f2 = 0.3. These graphs are shown in Fig. 2.4.

Example 2.3.2 Consider the data in Example 2.1.3, where the pizza delivery times
for each branch are recorded over a period of 1 month. The frequency table forms the
basis for the bar chart, either using the absolute or relative frequencies on the y-axis.
Figure 2.5 shows the bar charts for the number and proportion of pizza deliveries per
branch. The graphs can be produced in R by applying the barplot command to a
frequency table:

barplot(table(branch))
barplot(table(branch)/length(branch))

Remark 2.3.1 Insteadof vertical bars, horizontal bars canbedrawnusing the optional
argument horiz=TRUE in the barplot command.
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Fig. 2.5 Bar charts for the pizza deliveries per branch

2.3.2 Pie Chart

Pie charts are another option to visualize the absolute and relative frequencies of
nominal and ordinal variables. A pie chart is a circle partitioned into segments,
where each of the segments represents a category. The size of each segment depends
upon the relative frequency and is determined by the angle f j · 360◦.

Example 2.3.3 To illustrate the construction of a pie chart, let us consider again
Example 2.1.1 in which ten people in a supermarket queue were classified as being
either male (M) or female (F): M, F, M, F, M, M, M, F, M, M. The pie chart for this
data will have two segments: one for males and another one for females. The relative
frequencies are f1 = 7/10 and f2 = 3/10, respectively. The size of the segment
for the first category (M) is f1 · 360◦ = (7/10) · 360◦ = 252◦, and the size of the
segment for the second category (F) is f2 · 360◦ = (3/10) · 360◦ = 108◦. The pie
chart is shown in Fig. 2.6a.

Example 2.3.4 Consider again Example 2.2.1, where 200 customers were asked
about their level of satisfaction (5 categories) with their car service. The pie chart
for this example consists of five segments representing the categories 1, 2, 3, 4,
and 5. The size of the j th segment is f j · 360◦, j = 1, 2, 3, 4, 5. For example, for
category 1, there are 4 out of 200 customers, who are not satisfied at all. The angle
of the segment “not satisfied at all” therefore is f1 · 360◦ = 4/200 · 360◦ = 7.2◦.
Similarly, we can calculate the angle of the other segments and obtain a pie chart as
shown in Fig. 2.6b using the pie command in R

pie(table(sv))
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Fig. 2.6 Pie charts

Remark 2.3.2 Note that the area of a segment is not proportional to the absolute
frequency of the respective category. Instead, the area of the segment is proportional
to the angle f j · 360◦ (and depends also on the radius of the whole circle). It has been
argued that this may cause improper interpretations as the human eye may catch the
segment’s area more easily than the angle of a segment. Pie charts should therefore
be used with caution.

2.3.3 Histogram

If a variable consists of a large number of different values, the number of categories
used to construct bar charts will consequently be large too. A bar chart may thus not
give a clear summary when applied to a continuous variable. Instead, a histogram is
the appropriate choice to represent the distribution of values of continuous variables.
It is based on the idea to categorize the data into different groups and plot the bars
for each category with height h j = f j/d j , where d j = e j − e j−1 denotes the width
of the j th class interval or category. An important consideration for this concept is
that the area of the bars (=height × width) is proportional to the relative frequency.
This means that the widths of the bars need not necessarily to be the same because
different widths can be adjusted with different heights of the bars.

Example 2.3.5 Consider Example 2.1.2, where n = 20 people were divided into five
class intervals 0–20, 21–40, 41–60, 61–80, and 81–100 based on their performance
in a written driving licence examination. The frequency table is given as
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Class intervals 0–20 21–40 41–60 61–80 81–100
Absolute freq n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative freq f1 = 1
20 f2 = 3

20 f3 = 3
20 f4 = 9

20 f5 = 5
20

Height f j/d j h1 = 1
400 h2 = 3

400 h3 = 3
400 h4 = 9

400 h5 = 4
400

Fig. 2.7 Histogram for the
scores of the people
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The histogram for this grouped data set has five categories and therefore it has
five bars. Since the widths of class intervals are the same, the heights of the bars
are proportional to the relative frequency of the respective category. The resulting
histogram is displayed in Fig. 2.7.

Example 2.3.6 RecallExample2.2.3 and thevariable “pizzadelivery time”.Table 2.3
shows the summary of the grouped data and the values needed to calculate the his-
togram. Figure 2.8a shows the histogramwith equal widths of delivery time intervals.
We see a symmetric distribution of the pizza delivery times, but many delivery times
exceeding the target time of 30 min. If the histogram is required to have different
widths for different bars, i.e. different delivery time intervals for different categories,
then it can also be constructed as shown in Fig. 2.8b. This representation is different
from Fig. 2.8a. The following commands in R are used to construct the histograms
for absolute and relative frequencies, respectively:

hist(time) # show abs. frequencies
hist(time, freq=F) # show rel. frequencies

Remark 2.3.3 The R command truehist() from the library MASS presents an alter-
native to the hist() command. The default specifications are somewhat different,
and many users prefer it to the command hist.
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Table 2.3 Values needed to calculate the histogram for the grouped pizza delivery time data

Delivery time j e j−1 e j d j f j h j

[0; 10] 1 0 10 10 0.0000 0.00000

(10; 15] 2 10 15 5 0.0024 0.00047

(15; 20] 3 15 20 5 0.0166 0.00332

(20; 25] 4 20 25 5 0.0592 0.01185

(25; 30] 5 25 30 5 0.1698 0.03397

(30; 35] 6 30 35 5 0.2946 0.05893

(35; 40] 7 35 40 5 0.2765 0.05529

(40; 45] 8 40 45 5 0.1351 0.02701

(45; 50] 9 45 50 5 0.0411 0.00821

(50; 55] 10 50 55 5 0.0047 0.00094
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Fig. 2.8 Histogram for pizza delivery time

2.4 Kernel Density Plots

A disadvantage of histograms is that continuous data is categorized artificially. The
choice of the class intervals is crucial for the final look of the graph. A more elegant
way to deal with this problem is to smooth the histogram in the sense that each obser-
vation may contribute to different classes with different weights, and the distribution
is represented by a continuous function rather than a step function. A kernel density
plot can be produced by using the following function:
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Fig. 2.9 Construction of kernel density plots

f̂n(x) = 1

nh

n∑

i=1

K

(
x − xi

h

)

, h > 0, (2.12)

where n is the sample size, h is the bandwidth, and K is a kernel function, for
example

K (x) =
{

1
2 if − 1 ≤ x ≤ 1
0 elsewhere

(rectangular kernel)

K (x) =
{

3
4 (1 − x2) if |x | < 1
0 elsewhere.

(Epanechnikov kernel)

To better understand this concept, consider Fig. 2.9a. The tick marks on the x-axis
represent five observations: 3, 6, 7, 8, and 10. On each observation xi as well as its
surrounding values, we apply a kernel function, which is the Epanechnikov kernel in
the figure. This means that we have five functions (grey, dashed lines), which refer to
the five observations. These functions are largest at the observation itself and become
gradually smaller as the distance from the observation increases. Summing up the
functions, as described in Eq. (2.12), yields the solid black line, which is the kernel
density plot of the five observations. It is a smooth curve, which represents the data
distribution. The degree of smoothness can be controlled by the bandwidth h, which
is chosen as 2 in Fig. 2.9a.
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Fig. 2.10 Kernel density plot for delivery time

The choice of the kernel may affect the overall look of the plot. Above, we have
given the functions for the rectangular and Epanechnikov kernels. However, another
common function for kernel density plots is the normal distribution function, which
is introduced in Sect. 8.2.2, see Fig. 2.9b for a comparison of different kernels. The
kernel which is based on the normal distribution is called the “Gaussian kernel” and
is the default in R, where a kernel density plot can be produced combining the plot
and density commands:

example <- c(3,6,7,8,10)
plot(density(example, kernel='gaussian'))

Please note that kernel functions are not defined arbitrarily and need to satisfy cer-
tain conditions, such as those required for probability density functions as explained
in Chap. 7, Theorem 7.2.1.

Example 2.4.1 Let us consider the pizza data which we introduced earlier and in
Appendix A.4. We can summarize the delivery time by using a kernel density plot
using the R command plot(density(time)) and compare it with a histogram,
see Fig. 2.10a. We see that the delivery times are symmetric around 35 min. If we
shorten the bandwidth to a half of the default bandwidth (option adjust=0.5), the
kernel density plot becomes more wiggly, which is illustrated in Fig. 2.10b.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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2.5 Key Points and Further Issues

Note:

� Bar charts and histograms are not the same graphical tools. Bar charts
visualize the categories of nominal or ordinal variables whereas his-
tograms visualize the distribution of continuous variables. A bar chart
does not require to have ordered values on the x-axis, but a histogram
always requires the values on the x-axis to be on a continuous scale and
to be ordered. The interpretation of a histogram is simplified if the class
intervals are equally sized, since then the heights of the rectangles of
the histogram are proportional to the absolute or relative frequencies.

� The ECDF can be used only for ordinal and continuous variables, see
Sect. 7.2 for the theoretical background of the cumulative distribution
function.

� A pie chart summarizes observations from a discrete (nominal, ordi-
nal or grouped continuous) variable. It is only useful if the number of
different values (categories) is small. It is to be kept in mind that the
area of each segment is not proportional to the absolute frequency of
the respective category. The angle of the segment is proportional to the
relative frequency of the respective category.

� Other possibilities to visualize the distribution of variables are, for exam-
ple, box plots (Sect. 3.3) and stratified plots (Sects. 4.1.3, 4.3.1, and 4.4).

2.6 Exercises

Exercise 2.1 Consider the results of the national elections in South Africa in 2014
and 2009:

Party Results 2014 (%) Results 2009 (%)
ANC (African National Congress) 62.15 65.90
DA (Democratic Alliance) 22.23 16.66
EFF (Economic Freedom Fighters) 6.35 –
IFP (Inkatha Freedom Party) 2.40 4.55
COPE (Congress of the People) 0.67 7.42
Others 6.20 5.47

(a) Summarize the results of the 2014 elections in a bar chart. Do it manually and
by using R.

(b) How would you compare the results of the 2009 and 2014 elections? Offer a
simple solution that can be represented in a single plot. Construct this plot in R.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Exercise 2.2 Consider a variable X describing the time until the first goal was scored
in the matches of the 2006 football World Cup competition. Only matches with at
least one goal are considered, and goals during the x th minute of extra time are
denoted as 90 + x :

6 24 90+1 8 4 25 3 83 89 34 25 24 18 6
23 10 28 4 63 6 60 5 40 2 22 26 23 26
44 49 34 2 33 9 16 55 23 13 23 4 8 26
70 4 6 60 23 90+5 28 49 6 57 33 56 7

(a) What is the scale of X?
(b) Write down the frequency table of X based on the following categories: [0, 15),

[15, 30), [30, 45), [45, 60), [60, 75), [75, 90), [90, 96).
(c) Draw the histogram for X with intervals relating to the groups from the frequency

table.
(d) Now use R to reproduce the histogram. Compare the histogram to a kernel

density plot of your choice.
(e) Calculate the empirical cumulative distribution function for the grouped data.
(f) Use R to plot the ECDF (via a step function) for

(i) the original data and
(ii) the grouped data.

(g) Consider the grouped data. Now assume that the values within each interval are
distributed uniformly. Determine the proportion of first goals which occurred

(i) in the first half, i.e. during the first 45 min,
(ii) in the last 10 min or during the extra time,
(iii) between the 20th and 65th min, i.e. what is H(20 ≤ X ≤ 65)?

(h) Determine the time point at which in 80 % of the matches the first goal was
scored at or before this time point.

Exercise 2.3 Suppose we have the following information to construct a histogram
for a continuous variable with 2000 observations:

j e j−1 e j d j h j

1 0 1 1 0.125
2 1 4 3 0.125
3 4 7 3 0.125
4 7 8 1 0.125

(a) Determine the relative frequencies for each interval.
(b) Determine the absolute frequencies.
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Exercise 2.4 A university survey was conducted on 500 first-year students to obtain
knowledge about the size of their accommodation (in square metres).

j Size of accommodation (m2)
e j−1 ≤ x ≤ e j

F(x)

1 8–14 0.25
2 14–22 0.40
3 22–34 0.75
4 34–50 0.97
5 50–82 1.00

(a) Determine the absolute frequencies for each category.
(b) What proportion of people live in a flat of at least 34 m2?

Exercise 2.5 Consider a survey in which 100 people were asked to rate on a scale
from 1 to 10 howmuch they agree with the statement that “there is too much football
on television”. The results are summarized below:

Score 0 1 2 3 4 5 6 7 8 9 10
Responses 0 1 3 8 8 27 30 11 6 4 2

(a) Calculate and draw the ECDF of the scores.
(b) Determine F(3) and F(9).
(c) Consider the situation, where the data is summarized in the two categories “dis-

agree” (score ≤ 5) and “agree” (score > 5). What would the ECDF look like
under the approach outlined in (2.11)? Determine F(3) and F(9) for the sum-
marized data.

(d) Explain the differences between (b) and (c).

Exercise 2.6 It is possible to produce professional graphics in R. However, it is
advantageous to go beyond the default options. To demonstrate this, consider Exam-
ple 2.1.3 about the pizza delivery data, which is described in Appendix A.4.

(a) Set the working directory in R (setwd()), read in the data (read.csv()), and
attach the data. Draw a histogram of the variable “temperature”. Type ?hist,
and view the options. Adjust the histogram so that you are satisfied with (i) axes
labelling, (ii) axes range, and (iii) colour. Now use the lines() command to
add a dashed vertical line at 65 ◦C (which is the minimum temperature the pizza
should have at the time of delivery).

(b) Consider a different approach, which constructs plots by means of multiple lay-
ers using ggplot2. You need an Internet connection to install the package using
the command install.packages(’ggplot2’). Browse through the help
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pages on http://docs.ggplot2.org/current/. Look specifically at the examples for
ggplot, qplot, scale_histogram, and scale_y_continuous. Try to
understand the roles of “aesthetics” and “geoms”. Now, after loading the library
via library(ggplot2), create a ggplot object for the pizza data,which declares
“temperature” to be the x-variable. Now add a layer with geom_histogram to
create a histogram with interval width of 2.5 and dark grey bars which are
50 % transparent. Change the y-axis labelling by adding the relevant layer using
scale_y_continuous. Plot the graph.

(c) Now create a normal bar chart for the variable “driver” in R. Type ?barplot
and ?par to see the options one can pass on to barchart() to adjust the graph.
Make the graph look good.

(d) Now create the same bar chart with ggplot2. Use qplot instead of ggplot
to create the plot. Use an option which makes each bar to consist of segments
relating to the day of delivery, so that one can see the number of deliveries by
driver to highlight during which days the drivers delivered most often. Browse
through “themes” and “scales” on the help page, and add layers that make the
background black and white and the bars on a grey scale.

→ Solutions to all exercises in this chapter can be found on p. 325

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,
Springer, Heidelberg

http://docs.ggplot2.org/current/


3Measures of CentralTendency and
Dispersion

Adata set may contain many variables and observations. However, we are not always
interested in each of themeasured values but rather in a summarywhich interprets the
data. Statistical functions fulfil the purpose of summarizing the data in a meaningful
yet concise way.

Example 3.0.1 Suppose someone from Munich (Germany) plans a holiday in
Bangkok (Thailand) during the month of December and would like to get infor-
mation about the weather when preparing for the trip. Suppose last year’s maximum
temperatures during the day (in degrees Celsius) for December 1–31 are as follows:

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29.

How do we draw conclusions from this data? Looking at the individual values gives
us a feeling about the temperatures one can experience in Bangkok, but it does not
provide us with a clear summary. It is evident that the average of these 31 values as
“Sum of all values/Total number of observations” (22 + 24 + · · · + 28 + 29)/31 =
26.48 is meaningful in the sense that we know what temperature to expect “on
average”. To choose the right clothing for the holidays, we may also be interested in
knowing the temperature range to understand the variability in temperature, which
is between 21 and 31 ◦C. Summarizing 31 individual values with only three numbers
(26.48, 21, and 31) will provide sufficient information to plan the holidays.

In this chapter, we focus on the most important statistical concepts to summarize
data: these are measures of central tendency and variability. The applications of each
measure depend on the scale of the variable of interest, see Appendix D.1 for a
detailed summary.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_3
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3.1 Measures of Central Tendency

A natural human tendency is to make comparisons with the “average”. For example,
a student scoring 40% in an examination will be happy with the result if the average
score of the class is 25%. If the average class score is 90%, then the student may not
feel happy even if he got 70% right. Some other examples of the use of “average”
values in common life are mean body height, mean temperature in July in some
town, the most often selected study subject, the most popular TV show in 2015, and
average income. Various statistical concepts refer to the “average” of the data, but
the right choice depends upon the nature and scale of the data as well as the objective
of the study. We call statistical functions which describe the average or centre of the
data location parameters or measures of central tendency.

3.1.1 Arithmetic Mean

The arithmetic mean is one of the most intuitive measures of central tendency.
Suppose a variable of size n consists of the values x1, x2, . . . , xn . The arithmetic
mean of this data is defined as

x̄ = 1

n

n∑

i=1

xi . (3.1)

In informal language, we often speak of “the average” or just “the mean” when using
the formula (3.1).

To calculate the arithmetic mean for grouped data, we need the following fre-
quency table:

Class intervals a j a1 = e0 − e1 a2 = e1 − e2 … ak = ek−1 − ek
Absolute freq. n j n1 n2 … nk
Relative freq. f j f1 f2 … fk

Note thata1, a2, . . . , ak are the k class intervals and each intervala j ( j = 1, 2, . . . , k)
contains n j observations with

∑k
j=1 n j = n. The relative frequency of the j th class

is f j = n j/n and
∑k

j=1 f j = 1. The mid-value of the j th class interval is defined as
m j = (e j−1 + e j )/2, which is the mean of the lower and upper limits of the interval.
The weighted arithmetic mean for grouped data is defined as

x̄ = 1

n

k∑

j=1

n jm j =
k∑

j=1

f jm j . (3.2)
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Example 3.1.1 Consider again Example 3.0.1 where we looked at the temperature
in Bangkok during December. The measurements were

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29 .

The arithmetic mean is therefore

x̄ = 22 + 24 + 21 + · · · + 28 + 29

31
= 26.48 ◦C.

In R, the arithmetic mean can be calculated using the mean command:

weather <- c(22,24,21,,30,28,29)
mean(weather)
[1] 26.48387

Let us assume the data in Example 3.0.1 is summarized in categories as
follows:

Class intervals < 20 (20 − 25] (25, 30] (30, 35] > 35
Absolute frequencies n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

Relative frequencies f1 = 0 f2 = 12
31 f3 = 18

31 f4 = 1
31 f5 = 0

We can calculate the (weighted) arithmetic mean as

x̄ =
k∑

j=1

f jm j = 0 + 12

31
· 22.5 + 18

31
· 27.5 + 1

31
32.5 + 0 ≈ 25.7.

In R, we use the weighted.mean function to obtain the result. The function requires
to specify the (hypothesized) means for each group, for example the middle values
of the class intervals, as well as the weights.

weighted.mean(c(22.5,27.5,32.5),c(12/31,18/31,1/31))

Interestingly, the results of themean and the weightedmean differ. This is because
we use themiddle of each class as an approximation of themeanwithin the class. The
implication is that we assume that the values are uniformly distributed within each
interval. This assumption is obviously not met. If we had knowledge about the mean
in each class, like in this example, we would obtain the correct result as follows:

x̄ =
k∑

j=1

f j x̄ j = 0 + 12

31
· 23.83333 + 18

31
· 28 + 1

31
32.5 + 0 = 26.48387.

However, the weighted mean is meant to estimate the arithmetic mean in those
situations where only grouped data is available. It is therefore typically used to
obtain an approximation of the true mean.
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Properties of the Arithmetic Mean.

(i) The sum of the deviations of each variable around the arithmetic mean is zero:
n∑

i=1

(xi − x̄) =
n∑

i=1

xi − nx̄ = nx̄ − nx̄ = 0. (3.3)

(ii) If the data is linearly transformed as yi = a + bxi , where a and b are known
constants, it holds that

ȳ = 1

n

n∑

i=1

yi = 1

n

n∑

i=1

(a + bxi ) = 1

n

n∑

i=1

a + b

n

n∑

i=1

xi = a + bx̄ . (3.4)

Example 3.1.2 Recall Examples 3.0.1 and 3.1.1 where we considered the tempera-
tures in December in Bangkok. We measured them in degrees Celsius, but someone
from the USA might prefer to know them in degrees Fahrenheit. With a linear trans-
formation, we can create a new temperature variable as

Temperature in ◦F = 32 + 1.8 Temperature in ◦C.

Using ȳ = a + bx̄ , we get ȳ = 32 + 1.8 · 26.48 ≈ 79.7 ◦F.

3.1.2 Median and Quantiles

The median is the value which divides the observations into two equal parts such
that at least 50% of the values are greater than or equal to the median and at least
50% of the values are less than or equal to the median. The median is denoted by
x̃0.5; then, in terms of the empirical cumulative distribution function, the condition
F(x̃0.5) = 0.5 is satisfied. Consider the n observations x1, x2, . . . , xn which can
be ordered as x(1) ≤ x(2) ≤ · · · ≤ x(n). The calculation of the median depends on
whether the number of observations n is odd or even. When n is odd, then x̃0.5 is the
middle ordered value. When n is even, then x̃0.5 is the arithmetic mean of the two
middle ordered values:

x̃0.5 =
{
x((n+1)/2) if n is odd
1
2 (x(n/2) + x(n/2+1)) if n is even.

(3.5)

Example 3.1.3 Consider again Examples 3.0.1–3.1.2 where we evaluated the tem-
perature in Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31, are as
follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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We have n = 31, and therefore x̃0.5 = x((n+1)/2) = x((31+1)/2) = x(16) = 26. There-
fore, at least 50% of the 31 observations are greater than or equal to 26 and at least
50% are less than or equal to 26. If one value was missing, let us say the last observa-
tion, then themedian would be calculated as 1

2 (x(30/2) + x(30/2+1)) = 1
2 (26 + 26) =

26. In R, we would have obtained the results using the median command:

median(weather)

If we deal with grouped data, we can calculate the median under the assumption
that the values within each class are equally distributed. Let K1, K2, . . . , Kk be
k classes with observations of size n1, n2, . . . , nk , respectively. First, we need to
determine which class is the median class, i.e. the class that includes the median. We
define the median class as the class Km for which

m−1∑

j=1

f j < 0.5 and
m∑

j=1

f j ≥ 0.5 (3.6)

hold. Then, we can determine the median as

x̃0.5 = em−1 + 0.5 − ∑m−1
j=1 f j

fm
dm (3.7)

where em−1 denotes the lower limit of the interval Km and dm is the width of the
interval Km .

Example 3.1.4 Recall Example 3.1.1 where we looked at the grouped temperature
data:

Class intervals <20 (20–25] (25, 30] (30, 35] >35
n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

f j f1 = 0 f2 = 12
31 f3 = 18

31 f4 = 1
31 f5 = 0

∑
j f j 0 12

31
30
31 1 1

For the third class (m = 3), we have

m−1∑

j=1

f j = 12

31
< 0.5 and

m∑

j=1

f j = 30

31
≥ 0.5.

We can therefore calculate the median as

x̃0.5 = em−1 + 0.5 − ∑m−1
j=1 f j

fm
dm = 25 + 0.5 − 12

31
18
31

· 5 ≈ 25.97.
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(b) Skewed data
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(d) Data with outliers

Fig. 3.1 Arithmetic mean and median for different data

Comparing the Mean with the Median. In the above examples, the mean and the
median turn out to be quite similar to each other. This is because we looked at data
which is symmetrically distributed around its centre, i.e. on average, we can expect
26 ◦C with deviations that are similar above and below the average temperature.
A similar example is given in Fig. 3.1a: we see that the raw data is summarized by
using ticks at the bottom of the graph and by using a kernel density estimator. The
mean and the median are similar here because the distribution of the observations
is symmetric around the centre. If we have skewed data (Fig. 3.1b), then the mean
and the median may differ. If the data has more than one centre, such as in Fig. 3.1c,
neither the median nor the mean has meaningful interpretations. If we have outliers
(Fig. 3.1d), then it is wise to use the median because the mean is sensitive to outliers.
These examples show that depending on the situation of interest either the mean, the
median, both or neither of them can be useful.
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Quantiles. Quantiles are a generalization of the idea of the median. The median is
the value which splits the data into two equal parts. Similarly, a quantile partitions
the data into other proportions. For example, a 25%-quantile splits the data into two
parts such that at least 25% of the values are less than or equal to the quantile and at
least 75% of the values are greater than or equal to the quantile. In general, let α be a
number between zero and one. The (α × 100)%-quantile, denoted as x̃α , is defined as
the value which divides the data in proportions of (α × 100)% and (1 − α) × 100%
such that at least α × 100% of the values are less than or equal to the quantile and
at least (1 − α) × 100% of the values are greater than or equal to the quantile. In
terms of the empirical cumulative distribution function, we can write F(x̃α) = α. It
follows immediately that for n observations, at least nα values are less than or equal
to x̃α and at least n(1 − α) observations are greater than or equal to x̃α . The median
is the 50%-quantile x̃0.5. If α takes the values 0.1, 0.2, . . . , 0.9, the quantiles are
called deciles. If α · 100 is an integer number (e.g. α × 100 = 95), the quantiles are
called percentiles, i.e. the data is divided into 100 equal parts. If α takes the values
0.2, 0.4, 0.6, and 0.8, the quantiles are known as quintiles and they divide the data
into five equal parts. If α takes the values 0.25, 0.5, and 0.75, the quantiles are called
quartiles.

Consider n ordered observations x(1) ≤ x(2) ≤ · · · ≤ x(n). The α · 100%-quantile
x̃α is calculated as

x̃α =
⎧
⎨

⎩

x(k) if nα is not an integer number,
choose k as the smallest integer > nα,

1
2 (x(nα) + x(nα+1)) if nα is an integer.

(3.8)

Example 3.1.5 Recall Examples 3.0.1–3.1.4 where we evaluated the temperature in
Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31 are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

To determine the quartiles, i.e. the 25, 50, and 75% quantiles, we calculate nα as
31 · 0.25 = 7.75, 31 · 0.5 = 15.5, and 31 · 0.75 = 23.25. Using (3.8), it follows that

x̃0.25 = x(8) = 25, x̃0.5 = x(16) = 26,

x̃0.75 = x(24) = 29.

In R, we obtain the same results using the quantile function. The probs argument
is used to specify α. By default, the quartiles are reported.

quantile(weather)
quantile(weather, probs=c(0,0.25,0.5,0.75,1))

However, please note that R offers nine different ways to obtain quantiles, each
of which can be chosen by the type argument. See Hyndman and Fan (1996) for
more details.
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(b) QQ-plot for Mario and Salvatore

Fig. 3.2 QQ-plots for the pizza delivery time for different drivers

3.1.3 Quantile–Quantile Plots (QQ-Plots)

If we plot the quantiles of two variables against each other, we obtain a Quantile–
Quantile plot (QQ-plot). This provides a simple summary ofwhether the distributions
of the two variables are similar with respect to their location or not.

Example 3.1.6 Consider again thepizzadatawhich is described inAppendixA.4.We
may be interested in the delivery time for different drivers to see if their performance
is the same. Figure3.2a shows a QQ-plot for the delivery time of driver Luigi and
the delivery time of driver Domenico. Each point refers to the α% quantile of both
drivers. If the point lies on the bisection line, then they are identical and we conclude
that the quantiles of the both drivers are the same. If the point is below the line, then
the quantile is higher for Luigi, and if the point is above the line, then the quantile is
lower for Luigi. So if all the points lie exactly on the line, we can conclude that the
distributions of both the drivers are the same. We see that all the reported quantiles
lie below the line, which implies that all the quantiles of Luigi have higher values
than those of Domenico. This means that not only on an average, but also in general,
the delivery times are higher for Luigi. If we look at two other drivers, as displayed
in Fig. 3.2b, the points lie very much on the bisection line.We can therefore conclude
that the delivery times of these two drivers do not differ much.

In R, we can generate QQ-plots by using the qqplot command:

qqplot()
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Fig. 3.3 Different patterns for a QQ-plot

As a summary, let us consider four important patterns:

(a) If all the pairs of quantiles lie (nearly) on a straight line at an angle of 45% from
the x-axis, then the two samples have similar distributions (Fig. 3.3a).

(b) If the y-quantiles are lower than the x-quantiles, then the y-values have a ten-
dency to be lower than the x-values (Fig. 3.3b).

(c) If the x-quantiles are lower than the y-quantiles, then the x-values have a ten-
dency to be lower than the y-values (Fig. 3.3c).

(d) If the QQ-plot is like Fig. 3.3d, it indicates that there is a break point up to which
the y-quantiles are lower than the x-quantiles and after that point, the y-quantiles
are higher than the x-quantiles.

3.1.4 Mode

Consider a situation in which an ice cream shop owner wants to know which flavour
of ice cream is the most popular among his customers. Similarly, a footwear shop
owner may like to find out what design and size of shoes are in highest demand. To
answer this type of questions, one can use the mode which is another measure of
central tendency.

The mode x̄M of n observations x1, x2, . . . , xn is the value which occurs the
most compared with all other values, i.e. the value which has maximum absolute
frequency. It may happen that two or more values occur with the same frequency in
which case the mode is not uniquely defined. A formal definition of the mode is

x̄M = a j ⇔ n j = max {n1, n2, . . . , nk} . (3.9)

Themode is typically applied to any type of variable forwhich the number of different
values is not too large. If continuous data is summarized in groups, then the mode
can be used as well.

Example 3.1.7 Recall the pizza data set described in Appendix A.4. The pizza deliv-
ery service has three branches, in the East, West, and Centre, respectively. Suppose
we want to know which branch delivers the most pizzas. We find that most of the de-
liveries have been made in theWest, see Fig. 3.4a; therefore the mode is x̄M = West.
Similarly, suppose we also want to find the mode for the categorized pizza deliv-
ery time: if we group the delivery time in intervals of 5min, then we see that the
most frequent delivery time is the interval “30−35”min, see Fig. 3.4b. The mode is
therefore x̄M = [30, 35).
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Fig. 3.4 Results from the pizza data set

3.1.5 Geometric Mean

Consider n observations x1, x2, . . . , xn which are all positive and collected on a
quantitative variable. The geometric mean x̄G of this data is defined as

x̄G = n

√√√√
n∏

i=1

xi =
(

n∏

i=1

xi

) 1
n

. (3.10)

The geometric mean plays an important role in fields where we are interested in
products of observations, such as when we look at percentage changes in quantities.
We illustrate its interpretation and use by looking at the average growth of a quantity
in the sense that we allow a starting value, such as a certain amount of money or a
particular population, to change over time. Suppose we have a starting value at some
baseline time point 0 (zero), which may be denoted as B0. At time t , this value may
have changed and we therefore denote it as Bt , t = 1, 2, . . . , T . The ratio of Bt and
Bt−1,

xt = Bt

Bt−1
,

is called the t th growth factor. The growth rate rt is defined as

rt = ((xt − 1) · 100)%
and gives us an idea about the growth or decline of our value at time t . We can
summarize these concepts in the following table:
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Time Inventory Growth factor Growth rate
t Bt xt rt
0 B0 – –
1 B1 x1 = B1/B0 ((x1 − 1) · 100)%
2 B2 x2 = B2/B1 ((x2 − 1) · 100)%
.
.
.

.

.

.
.
.
.

.

.

.

T BT xT = BT /BT−1 ((xT − 1) · 100)%

We can calculate Bt (t = 1, 2, . . . , T ) by using the growth factors:
Bt = B0 · x1 · x2 · . . . · xt .

The average growth factor from B0 to BT is the geometricmean or geometric average
of the growth factors:

x̄G = T√x1 · x2 · . . . · xT

= T

√
B0 · x1 · x2 · . . . · xT

B0

= T

√
BT

B0
. (3.11)

Therefore, Bt at time t can be calculated as Bt = B0 · x̄ tG .

Example 3.1.8 Suppose someone wants to deposit money, say e1000, in a bank.
The bank advisor proposes a 5-year savings plan with the following plan for interest
rates: 1% in the first year, 1.5% in the second year, 2.5% in the third year, and 3%
in the last 2years. Now he would like to calculate the average growth factor and
average growth rate for the invested money. The concept of the geometric mean can
be used as follows:

Year Euro Growth factor Growth rate (%)
0 1000 – –
1 1010 1.01 1.0
2 1025.15 1.015 1.5
3 1050.78 1.025 2.5
4 1082.30 1.03 3.0
5 1114.77 1.03 3.0

The geometric mean is calculated as

x̄G = (1.01 · 1.015 · 1.025 · 1.03 · 1.03) 1
5 = 1.021968

which means that he will have on average about 2.2% growth per year. The savings
after 5years can be calculated as

e 1000 · 1.0219685 = e 1114.77.
It is easy to compare two different saving plans with different growth strategies using
the geometric mean.
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3.1.6 Harmonic Mean

The harmonic mean is typically used whenever different xi contribute to the mean
with a different weight wi , i.e. when we implicitly assume that the weight of each
xi is not one. It can be calculated as

x̄H = w1 + w2 + · · · + wk
w1
x1

+ w2
x2

+ · · · + wk
xk

=
∑k

i=1 wi∑k
i=1

wi
xi

. (3.12)

For example, when calculating the average speed, each weight relates to the rela-
tive distance travelled, ni/n, with speed xi . Using wi = ni/n and

∑
i wi = ∑

i ni/
n = 1, the harmonic mean can be written as

x̄H = 1
∑k

i=1
wi
xi

. (3.13)

Example 3.1.9 Suppose an investor bought shares worthe1000 for two consecutive
months. The price for a share was e50 in the first month and e200 in the second
month. What is the average purchase price? The number of shares purchased in
the first month is 1000/50 = 20. The number of shares purchased in the second
month is 1000/200 = 5. The total number of shares purchased is thus 20 + 5 = 25,
and the total investment is e2000. It is evident that the average purchase price is
2000/25 = e80. This is in fact the harmonic mean calculated as

x̄H = 1
0.5
50 + 0.5

200

= 80

because the weight of each purchase is ni/n = 1000/2000 = 0.5. If the investment
was e1200 in the first month and e800 in the second month, then we could use the
harmonic mean with weights 1200/2000 = 0.6 and 800/2000 = 0.4, respectively,
to obtain the results.

3.2 Measures of Dispersion

Measures of central tendency, as introduced earlier, give us an idea about the loca-
tion where most of the data is concentrated. However, two different data sets may
have the same value for the measure of central tendency, say the same arithmetic
means, but they may have different concentrations around the mean. In this case, the
location measures may not be adequate enough to describe the distribution of the
data. The concentration or dispersion of observations around any particular value is
another property which characterizes the data and its distribution. We now introduce
statistical methods which describe the variability or dispersion of data.
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Example 3.2.1 Suppose three students Christine, Andreas, and Sandro arrive at dif-
ferent times in the class to attend their lectures. Let us look at their arrival time in
the class after or before the starting time of lecture, i.e. let us look how early or late
they were (in minutes).

Week 1 2 3 4 5 6 7 8 9 10
Christine 0 0 0 0 0 0 0 0 0 0
Andreas −10 +10 −10 +10 −10 +10 −10 +10 −10 +10
Sandro 3 5 6 2 4 6 8 4 5 7

We see thatChristine always arrives on time (time difference of zero).Andreas arrives
sometimes 10min early and sometimes 10min late. However, the arithmetic mean of
both students is the same—on average, they both arrive on time! This interpretation
is obviously not meaningful. The difference between both students is the variability
in arrival times that cannot be measured with the mean or median. For this reason, we
need to introduce measures of dispersion (variability). With the knowledge of both
location and dispersion, we can give a much more nuanced comparison between the
different arrival times. For example, consider the third student Sandro. He is always
late; sometimes more, sometimes less. However, while on average he comes late, his
behaviour is more predictable than that of Andreas. Both location and dispersion are
needed to give a fair comparison.

Example 3.2.2 Consider another example in which a supplier for the car industry
needs to deliver 10 car doors with an exact width of 1.00 m. He supplies 5 doors with
a width of 1.05m and the remaining 5 doors with a width of 0.95 m. The arithmetic
mean of all the 10 doors is 1.00 m. Based on the arithmetic mean, one may conclude
that all the doors are good but the fact is that none of the doors are usable as they will
not fit into the car. This knowledge can be summarized by a measure of dispersion.

The above examples highlight that the distribution of a variable needs to be char-
acterized by a measure of dispersion in addition to a measure of location (central
tendency). Now we introduce various measures of dispersion.

3.2.1 Range and Interquartile Range

Consider a variable X with n observations x1, x2, . . . , xn . Order these n observations
as x(1) ≤ x(2) ≤ · · · ≤ x(n). The range is a measure of dispersion defined as the
difference between the maximum and minimum value of the data as

R = x(n) − x(1). (3.14)

The interquartile range is defined as the difference between the 75th and 25th
quartiles as

dQ = x̃0.75 − x̃0.25. (3.15)

It covers the centre of the distribution and contains 50% of the observations.
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Remark 3.2.1 Note that the interquartile range is defined as the interval [x̃0.25; x̃0.75]
in some literature. However, in line with most of the statistical literature, we define
the interquartile range to be a measure of dispersion, i.e. the difference between x̃0.75
and x̃0.25.

Example 3.2.3 Recall Examples 3.0.1–3.1.5 where we looked at the temperature in
Bangkok during December. The ordered values x(i), i = 1, . . . , 31, are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

We obtained the quantiles in Example 3.1.5 as x̃0.25 = 25 and x̃0.75 = 29. The in-
terquartile range is therefore dQ = 29 − 25 = 4, which means that 50% of the data
is centred between 25 and 29 ◦C. The range is R = 31 − 21 = 10 ◦C, meaning that
the temperature is varying at most by 10 ◦C. In R, there are several ways to ob-
tain quartiles, minimum and maximum values, e.g. by using min, max, quantiles,
range, among others. All numbers can be easily obtained by the summary command
which we recommend using.

summary(weather)

3.2.2 Absolute Deviation,Variance, and Standard Deviation

Another measure of dispersion is the variance. The variance is one of the most
importantmeasures in statistics and is needed throughout this book.Weuse the idea of
“absolute deviation” to give somemore background andmotivation for understanding
the variance as a measure of dispersion, followed by some examples.

Consider the deviations of n observations around a certain value “A” and combine
them together, for instance, via the arithmetic mean of all the deviations:

D = 1

n

n∑

i=1

(xi − A). (3.16)

This measure has the drawback that the deviations (xi − A), i = 1, 2, . . . , n, can be
either positive or negative and, consequently, their sum can potentially be very small
or even zero. Using D as a measure of variability is therefore not a good idea since
D may be small even for a large variability in the data.
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Using absolute values of the deviations solves this problem, and we introduce the
following measure of dispersion:

D(A) = 1

n

n∑

i=1

|xi − A|. (3.17)

It can be shown that the absolute deviation attains its minimum when A corresponds
to the median of the data:

D(x̃0.5) = 1

n

n∑

i=1

|xi − x̃0.5|. (3.18)

We call D(x̃0.5) the absolute median deviation. When A = x̄ , we speak of the
absolute mean deviation given by

D(x̄) = 1

n

n∑

i=1

|xi − x̄ |. (3.19)

Another solution to avoid the positive and negative signs of deviation in (3.16) is to
consider the squares of deviations xi − A, rather than using the absolute value. This
provides another measure of dispersion as

s2(A) = 1

n

n∑

i=1

(xi − A)2 (3.20)

which is known as the mean squared error (MSE) with respect to A. The MSE
is another important measure in statistics, see Chap.9, Eq. (9.4), for details. It can
be shown that s2(A) attains its minimum value when A = x̄ . This is the (sample)
variance

s̃2 = 1

n

n∑

i=1

(xi − x̄)2. (3.21)

After expanding s̃2, we can write (3.21) as

s̃2 = 1

n

n∑

i=1

x2i − x̄2. (3.22)

The positive square root of the variance is called the (sample) standard deviation,
defined as

s̃ =
√√√√1

n

n∑

i=1

(xi − x̄)2. (3.23)

The standard deviation has the same unit of measurement as the data whereas the
unit of the variance is the square of the units of the observations. For example, if X is
weight, measured in kg, then x̄ and s̃ are also measured in kg, while s̃2 is measured
in kg2 (which may be more difficult to interpret). The variance is a measure which
we use in other chapters to obtain measures of association between variables and to

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9


52 3 Measures of Central Tendency and Dispersion

draw conclusions from a sample about a population of interest; however, the standard
deviation is typically preferred for a descriptive summary of the dispersion of data.

The standard deviation measures how much the observations vary or how they
are dispersed around the arithmetic mean. A low value of the standard deviation
indicates that the values are highly concentrated around the mean. A high value of
the standard deviation indicates lower concentration of the observations around the
mean, and some of the observed values may even be far away from the mean. If there
are extreme values or outliers in the data, then the arithmetic mean is more sensitive
to outliers than the median. In such a case, the absolute median deviation (3.18) may
be preferred over the standard deviation.

Example 3.2.4 Consider again Example 3.2.1 where we evaluated the arrival times
of Christine, Andreas, and Sandro in their lecture. Using the arithmetic mean, we
concluded that both Andreas and Christine arrive on time, whereas Sandro is always
late; however, we saw that the variation of arrival times differs substantially among
the three students. To describe and quantify this variability formally, we calculate
the variance and absolute median deviation:

s̃2C = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((0 − 0)2 + · · · + (0 − 0)2) = 0

s̃2A = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((−10 − 0)2 + · · · + (10 − 0)2) ≈ 111.1

s̃2S = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((3 − 5)2 + · · · + (7 − 5)2) ≈ 3.3

D(x̃0.5,C ) = 1

10

n∑

i=1

|xi − x̃0.5| = |0 − 0| + · · · + |0 − 0| = 0

D(x̃0.5,A) = 1

10

n∑

i=1

|xi − x̃0.5| = | − 10 − 0| + · · · + |10 − 0| = 10

D(x̃0.5,S) = 1

10

n∑

i=1

|xi − x̃0.5| = |3 − 5| + · · · + |7 − 5| = 1.4.

We observe that the variation/dispersion/variability is the lowest for Christine and
highest forAndreas.Bothmedian absolute deviation andvariance allowa comparison
between the two students. If we take the square root of the variance, we obtain the
standard deviation. For example, s̃S = √

3.3 ≈ 1.8, which means that the average
difference of the observations from the arithmetic mean is 1.8.

In R, we can use the var command to calculate the variance. However, note
that R uses 1/(n − 1) instead of 1/n in calculating the variance. The idea behind
the multiplication by 1/(n − 1) in place of 1/n is discussed in Chap.9, see also
Theorem 9.2.1.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Variance for Grouped Data. The variance for grouped data can be calculated using

s2b = 1

n

k∑

j=1

n j (a j − x̄)2 = 1

n

⎛

⎝
k∑

j=1

n ja
2
j − nx̄2

⎞

⎠ = 1

n

k∑

j=1

n ja
2
j − x̄2,

(3.24)

where a j is the middle value of the j th interval. However, when the data is artificially
grouped and the knowledge about the original ungrouped data is available, we can
also use the arithmetic mean of the j th class:

s2b = 1

n

k∑

j=1

n j (x̄ j − x̄)2. (3.25)

The two expressions (3.24) and (3.25) represent the variance between the different
classes, i.e. they describe the variability of the class specific means x̄ j , weighted by
the size of each class n j , around the overall mean x̄ . It is evident that the variance
within each class is not taken into account in these formulae. The variability of
measurements in each class, i.e. the variability of ∀xi ∈ K j , is another important
component to determine the overall variance in the data. It is therefore not surprising
that using only the between variance s̃2b will underestimate the total variance and
therefore

s2b ≤ s2. (3.26)

If the data within each class is known, we can use the Theorem of Variance
Decomposition (see p. 136 for the theoretical background) to determine the variance.
This allows us to represent the total variance as the sum of the variance between
the different classes and the variance within the different classes as

s̃2 = 1

n

k∑

j=1

n j (x̄ j − x̄)2

︸ ︷︷ ︸
between

+ 1

n

k∑

j=1

n j s̃
2
j

︸ ︷︷ ︸
within

. (3.27)

In (3.27), s̃2j is the variance of the j th class:

s̃2j = 1

n j

∑

xi∈K j

(xi − x̄ j )
2. (3.28)

The proof of (3.27) is given in Appendix C.1, p. 423.

Example 3.2.5 Recall theweather data used inExamples 3.0.1–3.2.3 and thegrouped
data specified as follows:

Class intervals <20 (20–25] (25, 30] (30, 35] >35
n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0
x̄ j – 23.83 28 31 –
s̃2j – 1.972 2 0 –
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We know that x̄ = 26.48 and n = 31. The first step is to calculate the mean and
variances in each class using (3.28). We then obtain x̄ j and s2j as listed above. The
within and between variances are as follows:

1

n

k∑

j=1

n j s̃
2
j = 1

31
(12 · 1.972 + 18 · 2 + 1 · 0) ≈ 1.925

1

n

k∑

j=1

n j (x̄ j − x̄)2 = 1

31
(12 · [23.83 − 26.48]2 + 18 · [28 − 26.48]2

+1 · [31 − 26.48]2) ≈ 4.71.

The total variance is therefore s̃2 ≈ 6.64. Estimating the variance using all 31 ob-
servations would yield the same results. However, it becomes clear that without
knowledge about the variance within each class, we cannot reliably estimate s̃2. In
the above example, the variance between the classes is 3 times lower than the total
variance which is a serious underestimation.

Linear Transformations. Let us consider a linear transformation yi = a + bxi
(b 
= 0) of the original data xi , (i = 1, 2, . . . , n). We get the arithmetic mean of
the transformed data as ȳ = a + bx̄ and for the variance:

s̃2y = 1

n

n∑

i=1

(yi − ȳ)2 = b2

n

n∑

i=1

(xi − x̄)2

= b2s̃2x . (3.29)

Example 3.2.6 Let xi , i = 1, 2, . . . , n, denote measurements on time. These data
could have been recorded and analysed in hours, but we may be interested in a
summary inminutes.We canmake a linear transformation yi = 60 xi . Then, ȳ = 60x̄
and s̃2y = 602s̃2x . If themean and variance of the xi ’s have already been obtained, then
themean and variance of the yi ’s can be obtained directly using these transformations.

Standardization.Avariable is called standardized if its mean is zero and its variance
is 1. Standardization can be achieved by using the following transformation:

yi = xi − x̄

s̃x
= − x̄

s̃x
+ 1

s̃x
xi = a + bxi . (3.30)

It follows that ȳ = ∑n
i=1(xi − x̄)/s̃x = 0 and s̃2y = ∑n

i=1(xi − x̄)2/s̃2x = 1. There
are many statistical methods which require standardization, see, for example,
Sect. 10.3.1 for details in the context of statistical tests.

Example 3.2.7 Let X be a variablewhichmeasures air pollution by using the concen-
tration of atmospheric particulate matter (inµg/m3). Suppose we have the following
10 measurements:

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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30 25 12 45 50 52 38 39 45 33.

We calculate x̄ = 36.9, s̃2x = 136.09, and s̃x = 11.67. To get a standardized vari-
able Y , we transform all the observations xi ’s as

yi = xi − x̄

s̃x
= − x̄

s̃x
+ 1

s̃x
xi = − 36.9

11.67
+ 1

11.67
xi = −3.16 + 0.086xi .

Now y1 = −3.16 + 0.086 · 30 = −0.58, y2 = −3.16 + 0.086 · 25 = −1.01, . . .,
are the standardized observations. The scale command in R allows standard-
ization, and we can obtain the standardized observations corresponding to the
10 measurements as

air <- c(30,25,12,45,50,52,38,39,45,33)
scale(air)

Please note that the scale command uses 1/(n − 1) for calculating the variance,
as already outlined above. Thus, the results provided by scale are not identical to
those using (3.30).

3.2.3 Coefficient of Variation

Consider a situation where two different variables have arithmetic means x̄1 and x̄2
with standard deviations s̃1 and s̃2, respectively. Suppose we want to compare the
variability of hotel prices in Munich (measured in euros) and London (measured
in British pounds). How can we provide a fair comparison? Since the prices are
measured in different units, and therefore likely have arithmetic means which differ
substantially, it does not make much sense to compare the standard deviations di-
rectly. The coefficient of variation v is a measure of dispersion which uses both the
standard deviation and mean and thus allows a fair comparison. It is properly defined
only when all the values of a variable are measured on a ratio scale and are positive
such that x̄ > 0 holds. It is defined as

v = s

x̄
. (3.31)

The coefficient of variation is a unit-free measure of dispersion. It is often used when
themeasurements of two variables are different but can be put into relation by using a
linear transformation yi = bxi . It is possible to show that if all values xi of a variable
X are transformed into a variable Y with values yi = b · xi , b > 0, then v does not
change.
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Example 3.2.8 If we want to compare the variability of hotel prices in two selected
cities in Germany and England, we could calculate the mean prices, together with
their standard deviation. Suppose a sample of prices of say 100 hotels in two selected
cities in Germany and England is available and suppose we obtain the mean and
standard deviations of the two cities as x1 = e130, x2 = £230, s1 = e99, and s2 =
£212. Then, v1 = 99/130 ≈ 0.72 and v2 = 212/230 = 0.92. This indicates higher
variability in hotel prices in England. However, if the data distribution is skewed
or bimodal, then it may be wise not to choose the arithmetic mean as a measure of
central tendency and likewise the coefficient of variation.

3.3 Box Plots

So far we have described various measures of central tendency and dispersion. It can
be tedious to list those measures in summary tables. A simple and powerful graph
is the box plot which summarizes the distribution of a continuous (or sometimes an
ordinal) variable by using its median, quartiles, minimum, maximum, and extreme
values.

Figure3.5a shows a typical box plot. The vertical length of the box is the in-
terquartile range dQ = x̃0.75 − x̃0.25, which shows the region that contains 50% of
the data. The bottom end of the box refers to the first quartile, and the top end of the
box refers to the third quartile. The thick line in the box is the median. It becomes
immediately clear that the box indicates the symmetry of the data: if the median is
in the middle of the box, the data should be symmetric, otherwise it is skewed. The
whiskers at the end of the plot mark the minimum and maximum values of the data.
Looking at the box plot as a whole tells us about the data distribution and the range
and variability of observations. Sometimes, it may be advisable to understand which
values are extreme in the sense that they are “far away” from the centre of the distri-
bution. In many software packages, including R, values are defined to be extreme if
they are greater than 1.5 box lengths away from the first or third quartile. Sometimes,
they are called outliers. Outliers and extreme values are defined differently in some
software packages and books.

Median

1st Quartile

3rd Quartile

minimum

maximum

(a) Box plot without extreme values

Median

1st Quartile

3rd Quartile

extreme values

extreme values

(b) Box plot with extreme values
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The boxplot command in R draws a box plot. The range option controlswhether
extreme values should be plotted, and if yes, how one wants to define such values.

boxplot(variable, range=1.5)

Example 3.3.1 Recall Examples 3.0.1–3.2.5 where we looked at the temperature in
Bangkok during December. We have already calculated the median (26◦C) and the
quartiles (25, 29◦C).Theminimumandmaximumvalues are 21◦Cand31◦C.Thebox
plot for this data is shown in Fig. 3.5a. One can see that the temperature distribution
is slightly skewed with more variability for lower temperatures. The interquartile
range is 4, and therefore, any value >29 + 4 × 1.5 = 35 or <25 − 4 × 1.5 = 19
would be an extreme value. However, there are no extreme values in the data.

Example 3.3.2 Consider again the pizza data described in Appendix A.4. We use R
to plot the box plot for the delivery time via boxplot(time) (Fig. 3.5b). We see
a symmetric distribution with a median delivery time of about 35min. Most of the
deliveries took between 30 and 40min. The extreme values indicate that there were
some exceptionally short and long delivery times.
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3.4 Measures of Concentration

A completely different concept used to describe a quantitative variable is the idea of
concentration. For a variable X , it summarizes the proportion of each observation
with respect to the sum of all observations

∑n
i=1 xi . Let us look at a simple example

to demonstrate its usefulness.
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Table 3.1 Concentration of
farmland: two different
situations

Farmer (i) xi (Area, in hectare)

1 20

2 20

3 20

4 20

5 20
∑5

i=1 xi = 100

Farmer (i) xi (Area, in hectare)

1 0

2 0

3 0

4 0

5 100
∑5

i=1 xi = 100

Example 3.4.1 Consider a village with 5 farms. Each farmer has a farm of a certain
size. How canwe evaluate the land distribution?Do all farmers have a similar amount
of land or do one or two farmers have a big advantage because they have considerably
more space?

Table3.1 shows two different situations: in the table on the left, we see an equal
distribution of land, i.e. each farmer owns 20 hectares of farmland. This means X is
not concentrated, rather it is equally distributed. A statistical function describing the
concentration could return a value of zero in such a case. Consider another extreme
where one farmer owns all the farmland and the others do not own anything, as shown
on the right side of Table3.1. This is an extreme concentration of land: one person
owns everything and thus, we say the concentration is high. A statistical function
describing the concentration could return a value of one in such a case.

3.4.1 Lorenz Curve

The Lorenz curve is a popular method to display concentrations graphically. Con-
sider n observations x1, x2, . . . , xn of a variable X . Assume that all the observations
are positive. The sum of all the observations is

∑n
i=1 xi = nx̄ if the data is un-

grouped. First, we need to order the data: 0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(n). To plot the
Lorenz curve, we need

ui = i

n
, i = 0, . . . , n, (3.32)

and

vi =
∑i

j=1 x( j)∑n
j=1 x( j)

, i = 1, . . . , n; v0 := 0, (3.33)
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Fig. 3.5 Lorenz curves for no concentration (left) and some concentration (right)∗

where
∑i

j=1 x( j) is the cumulative total of observations up to the i th observation.
The idea is that vi describe the contribution of all values ≤ i in comparison with
the sum of all values. Plotting ui against vi for all i shows how much the sum of all
xi , for all observations ≤ i , contributes to the total sum. In other words, the point
(ui , vi ) says that ui · 100% of observations contain vi · 100% of the sum of all xi
less than or equal to i . Obviously, if all xi are identical, the Lorenz curve will be a
straight diagonal line, also known as the identity line or line of equality. If the xi
are of different sizes, then the Lorenz curve falls below the line of equality. This is
illustrated in the following example.

Example 3.4.2 Recall Example 3.4.1wherewe looked at the distribution of farmland
among 5 farmers. On the upper panel of Table3.1, we observed an equal distribution
of land among the farmers: x1 = 20, x2 = 20, x3 = 20, x4 = 20, and x5 = 20. We
obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 20/100, v2 = 40/100, . . . , v5 =
1. This yields a Lorenz curve as displayed on the left side of Fig. 3.5: there is no
concentration.We can interpret each point. For example, (u2, v2) = (0.4, 0.4)means
that 40% of farmers own 40% of the land.

The lower panel of Table3.1 describes the situation with strong concentration. For
this table, we obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 0, v2 = 0, . . . , v5 =
1. Therefore, for example, 80% of farmers own 0% of the land which shows strong
inequality.Most oftenwe do not have such extreme situations. In this case, the Lorenz
curve is bent towards the lower right corner of the plot, see the right side of Fig. 3.5.

We can plot the Lorenz curve in R using the Lc command in the library ineq.
The Lorenz curve for the left table of Example 3.4.1 is plotted in R as follows:

library(ineq)
x <- c(20,20,20,20,20)
plot(Lc(x))
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Fig. 3.6 Lorenz curve and
the Gini coefficient∗

ui−1 ui

vi−1

vi

F
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We can use the same approach as above to obtain the Lorenz curve when we have
grouped data. We simply describe the contributions for each class rather than for
each observation and approximate the values in each class by using its mid-point.
More formally we can write:

ũi =
i∑

j=1

f j , i = 1, 2, . . . , k; ũ0 := 0 (3.34)

and

ṽi =
∑i

j=1 f j a j
∑k

j=1 f j a j
=

∑i
j=1 n ja j

nx̄
, i = 1, 2, . . . , k; ṽ0 := 0. (3.35)

3.4.2 Gini Coefficient

We have seen in Sect. 3.4.1 that the Lorenz curve corresponds to the identity line, that
is the diagonal line of equality, for no concentration. When there is some concentra-
tion, then the curve deviates from this line. The amount of deviation depends on the
strength of concentration. Suppose we want to design a measure of concentration
which is 0 for no concentration and 1 for perfect (i.e. extreme) concentration.We can
simply measure the area between the Lorenz curve and the identity line and multiply
it by 2. For no concentration, the area will be zero and hence the measure will be
zero. If there is perfect concentration, then the curve will coincide with the axes, the
area will be close to 0.5, and twice the area will be close to one. The measure based
on such an approach is called the Gini coefficient:

G = 2 · F. (3.36)

Note that F is the area between the curve and the bisection or diagonal line.
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The Gini coefficient can be estimated by adding up the areas of the trapeziums Fi
as displayed in Fig. 3.6:

F =
n∑

i=1

Fi − 0.5,

where
Fi = ui−1 + ui

2
(vi − vi−1).

It can be shown that this corresponds to

G = 1 − 1

n

n∑

i=1

(vi−1 + vi ), (3.37)

but the proof is omitted. The same formula can be used for grouped data except that
ṽ is used instead of v. Since

0 ≤ G ≤ n − 1

n
, (3.38)

one may prefer to use the standardized Gini coefficient

G+ = n

n − 1
G, (3.39)

which takes a maximum value of 1.

Example 3.4.3 We return to our farmland example. Suppose we have 7 farmers with
farms of different sizes:

Farmer 1 2 3 4 5 6 7
Farmland size xi 20 14 59 9 36 23 3

Using the ordered values, we can calculate ui and vi using (3.32) and (3.33):

i x(i) ui vi

1 3 1
7 = 0.1429 3

164 = 0.0183

2 9 2
7 = 0.2857 12

164 = 0.0732

3 14 3
7 = 0.4286 26

164 = 0.1585

4 20 4
7 = 0.5714 46

164 = 0.2805

5 23 5
7 = 0.7143 69

164 = 0.4207

6 36 6
7 = 0.8571 105

164 = 0.6402

7 59 7
7 = 1.0000 164

164 = 1.0000
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Fig. 3.7 Lorenz curve for
Example 3.4.3∗
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The Lorenz curve is displayed in Fig. 3.7. Using this information, it is easy to
calculate the Gini coefficient:

G = 1 − 1

7
(0.0183 + [0.0183 + 0.0732] + [0.0732 + 0.1585] + [0.1585 + 0.2805]

+[0.2805 + 0.4207] + [0.4207 + 0.6402] + [0.6402 + 1]) = 0.402

We know that G = 0.4024 ≤ 6
7 = n−1

n . To standardize the coefficient, we therefore
have to use (3.39):

G+ = 7

6
G = 7

6
· 0.4024 = 0.4695 .

In R, we can obtain the non-standardized Gini Coefficient using the ineq function
in the library ineq.

library(ineq)
farm <- c(20,14,59,9,36,23,3)
ineq(farm)



3.5 Key Points and Further Issues 63

3.5 Key Points and Further Issues

Note:

� A summary on how to descriptively summarize data is given in Appen-
dix D.1.

� The median is preferred over the arithmetic mean when the data distri-
bution is skewed or there are extreme values.

� If data of a continuous variable is grouped, and the original ungrouped
data is not known, additional assumptions are needed to calculate mea-
sures of central tendency and dispersion. However, in some cases, these
assumptions may not be satisfied, and the formulae provided may give
imprecise results.

� QQ-plots are not only descriptive summaries but can also be used to test
modelling assumptions, see Chap.11.9 for more details.

� The distribution of a continuous variable can be easily summarized using
a box plot.

3.6 Exercises

Exercise 3.1 A hiking enthusiast has a new app for his smartphone which summa-
rizes his hikes by using a GPS device. Let us look at the distance hiked (in km) and
maximum altitude (in m) for the last 10 hikes:

Distance 12.5 29.9 14.8 18.7 7.6 16.2 16.5 27.4 12.1 17.5
Altitude 342 1245 502 555 398 670 796 912 238 466

(a) Calculate the arithmetic mean and median for both distance and altitude.
(b) Determine the first and third quartiles for both the distance and the altitude

variables. Discuss the shape of the distribution given the results of (a) and (b).
(c) Calculate the interquartile range, absolute median deviation, and standard de-

viation for both variables. What is your conclusion about the variability of the
data?

(d) One metre corresponds to approximately 3.28 ft. What is the average altitude
when measured in feet rather than in metres?

(e) Draw and interpret the box plot for both distance and altitude.
(f) Assume distance ismeasured as only short (5–15km),moderate (15–20km), and

long (20–30km). Summarize the grouped data in a frequency table. Calculate
the weighted arithmetic mean under the assumption that the raw data is not

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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known. Determine the weighted median under the assumption that the values
within each class are equally distributed.

(g) What is the variance for the grouped data when the raw data is known, i.e. when
one has knowledge about the variance in each class? How does it compare with
the variance one obtains when the raw data is unknown?

(h) Use R to reproduce the results of (a), (b), (c), (e), and (f).

Exercise 3.2 A gambler notes down his wins and losses (in e) from playing 10
games of roulette in a casino.

Round 1 2 3 4 5 6 7 8 9 10
Won/Lost 200 600 −200 −200 −200 −100 −100 −400 0

(a) Assume x̄ = − e90 and s = e294.7881. What is the result of round 10?
(b) Determine the mode and the interquartile range.
(c) A different gambler plays 33 rounds of roulette. His results are x̄ = e12 and

s = e1000. Is it meaningful to compare the variability of results of the two
players by using the coefficient of variation? If yes, determine the coefficients
of variation; if no, why is a comparison not possible?

Exercise 3.3 A fashion boutique has summarized its daily sales of designer socks in
different groups: men’s socks, women’s socks, and children’s socks. Unfortunately,
the data for men’s socks was lost. Determine the missing values.

n Arithmetic mean Standard deviation
in e in e

Women’s wear 45 16
√
6

Men’s wear ? ? ?
Children’s wear 20 7.5

√
3

Total 100 15
√
19.55

Exercise 3.4 The number of members of a millionaires’ club were as follows:

Year 2011 2012 2013 2014 2015 2016
Members 23 24 27 25 30 28

(a) What is the average growth rate of the membership?
(b) Based on the results of (a), how many members would one expect in 2018?
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Fig. 3.8 QQ-plots

(c) The president of the club is interested in the number of members in 2025, the
year when his presidency ends. Would it make sense to predict the number of
members for 2025?

In 2015, the members invested e250 million on the stock market. 10 members
contributed 16% of the investment sum, 8 members contributed e60 million, 8
members contributede70million, and another 4members contributed the remaining
amount.

(d) Draw the Lorenz curve for this data.
(e) Calculate and interpret the standardized Gini coefficient.

Exercise 3.5 Consider the monthly salaries Y (in Swiss francs) of a well-reputed
software company, as well as the length of service (in months, X ), and gender (Z ).
Figure3.8 shows the QQ-plots for both Y and X given Z . Interpret both graphs.

Exercise 3.6 There is no built-in function in R to calculate the mode of a variable.
Program such a function yourself. Hint: type ?table and ?names to recall the
functionality of these functions. Combine them in an intelligent way.

Exercise 3.7 Consider a country in which 90% of the wealth is owned by 20% of
the population, the so-called upper class. For simplicity, let us assume that the wealth
is distributed equally within this class.

(a) Draw the Lorenz curve for this country.
(b) Now assume a revolution takes place in the country and all members of the upper

class have to give away their wealth which is then distributed equally across the
remaining population. Draw the Lorenz curve for this scenario.

(c) What would the curve from (b) look like if the entire upper class left the country?
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Exercise 3.8 A bus route in the mountainous regions of Romania has a length of
418km. The manager of the bus company serving the route wants his buses to finish
a tripwithin 8h. The bus travels the first 180kmwith an average speed of 48km/h, the
next 117km with an average speed of 37km/h, and the last section with an average
speed of 52km/h.

(a) What is the average speed with which the bus travels?
(b) Will the bus finish the trip in time?

Exercise 3.9 Four friends have a start-up company which sells vegan ice cream.
Their initial financial contributions are as follows:

Person 1 2 3 4
Contribution (in e) 800 10300 4700 2220

(a) Calculate and draw the Lorenz curve.
(b) Determine and interpret the standardized Gini coefficient.
(c) Does G+ change if each of the friends contributes only half the amount of

money? If yes, how much? If no, why not?
(d) Use R to draw the above Lorenz curve and to calculate the Gini coefficient.

Exercise 3.10 Recall the pizza delivery data which is described in Appendix A.4.
Use R to read in and analyse the data.

(a) Calculate the mean, median, minimum, maximum, first quartile, and third quar-
tile for all quantitative variables.

(b) Determine and interpret the 99% quantile for delivery time and temperature.
(c) Write a function which calculates the absolute mean deviation. Use the function

to calculate the absolute mean deviation of temperature.
(d) Scale the delivery time and calculate the mean and variance for this variable.
(e) Draw a box plot for delivery time and temperature. The box plots should not

highlight extreme values.
(f) Use the cut command to create a new variable which summarizes delivery time

in steps of 10min. Calculate the arithmetic mean of this variable.
(g) Reproduce the QQ-plots shown in Example 3.1.6.

→ Solutions to all exercises in this chapter can be found on p. 333

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,
Springer, Heidelberg
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