
Online edition (c)�2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 19

2 The term vocabulary and postings
lists

Recall the major steps in inverted index construction:

1. Collect the documents to be indexed.

2. Tokenize the text.

3. Do linguistic preprocessing of tokens.

4. Index the documents that each term occurs in.

In this chapter we first briefly mention how the basic unit of a document can
be defined and how the character sequence that it comprises is determined
(Section 2.1). We then examine in detail some of the substantive linguis-
tic issues of tokenization and linguistic preprocessing, which determine the
vocabulary of terms which a system uses (Section 2.2). Tokenization is the
process of chopping character streams into tokens, while linguistic prepro-
cessing then deals with building equivalence classes of tokens which are the
set of terms that are indexed. Indexing itself is covered in Chapters 1 and 4.
Then we return to the implementation of postings lists. In Section 2.3, we
examine an extended postings list data structure that supports faster query-
ing, while Section 2.4 covers building postings data structures suitable for
handling phrase and proximity queries, of the sort that commonly appear in
both extended Boolean models and on the web.

2.1 Document delineation and character sequence decoding

2.1.1 Obtaining the character sequence in a document

Digital documents that are the input to an indexing process are typically
bytes in a file or on a web server. The first step of processing is to convert this
byte sequence into a linear sequence of characters. For the case of plain En-
glish text in ASCII encoding, this is trivial. But often things get much more

Online edition (c)�2009 Cambridge UP

20 2 The term vocabulary and postings lists

complex. The sequence of characters may be encoded by one of various sin-
gle byte or multibyte encoding schemes, such as Unicode UTF-8, or various
national or vendor-specific standards. We need to determine the correct en-
coding. This can be regarded as a machine learning classification problem,
as discussed in Chapter 13,1 but is often handled by heuristic methods, user
selection, or by using provided document metadata. Once the encoding is
determined, we decode the byte sequence to a character sequence. We might
save the choice of encoding because it gives some evidence about what lan-
guage the document is written in.

The characters may have to be decoded out of some binary representation
like Microsoft Word DOC files and/or a compressed format such as zip files.
Again, we must determine the document format, and then an appropriate
decoder has to be used. Even for plain text documents, additional decoding
may need to be done. In XML documents (Section 10.1, page 197), charac-
ter entities, such as &, need to be decoded to give the correct character,
namely & for &. Finally, the textual part of the document may need to
be extracted out of other material that will not be processed. This might be
the desired handling for XML files, if the markup is going to be ignored; we
would almost certainly want to do this with postscript or PDF files. We will
not deal further with these issues in this book, and will assume henceforth
that our documents are a list of characters. Commercial products usually
need to support a broad range of document types and encodings, since users
want things to just work with their data as is. Often, they just think of docu-
ments as text inside applications and are not even aware of how it is encoded
on disk. This problem is usually solved by licensing a software library that
handles decoding document formats and character encodings.

The idea that text is a linear sequence of characters is also called into ques-
tion by some writing systems, such as Arabic, where text takes on some
two dimensional and mixed order characteristics, as shown in Figures 2.1
and 2.2. But, despite some complicated writing system conventions, there
is an underlying sequence of sounds being represented and hence an essen-
tially linear structure remains, and this is what is represented in the digital
representation of Arabic, as shown in Figure 2.1.

2.1.2 Choosing a document unit

The next phase is to determine what the document unit for indexing is. ThusDOCUMENT UNIT

far we have assumed that documents are fixed units for the purposes of in-
dexing. For example, we take each file in a folder as a document. But there

1. A classifier is a function that takes objects of some sort and assigns them to one of a number
of distinct classes (see Chapter 13). Usually classification is done by machine learning methods
such as probabilistic models, but it can also be done by hand-written rules.

Online edition (c)�2009 Cambridge UP

2.1 Document delineation and character sequence decoding 21

 ك ِ ت ا ب ٌ ⇐ آَِ%#بٌ
 un b ā t i k
/kitābun/ ‘a book’

! Figure 2.1 An example of a vocalized Modern Standard Arabic word. The writing
is from right to left and letters undergo complex mutations as they are combined. The
representation of short vowels (here, /i/ and /u/) and the final /n/ (nunation) de-
parts from strict linearity by being represented as diacritics above and below letters.
Nevertheless, the represented text is still clearly a linear ordering of characters repre-
senting sounds. Full vocalization, as here, normally appears only in the Koran and
children’s books. Day-to-day text is unvocalized (short vowels are not represented
but the letter for ā would still appear) or partially vocalized, with short vowels in-
serted in places where the writer perceives ambiguities. These choices add further
complexities to indexing.

 . =>;> ;: ا7/89ل ا+5&34$132 012 1962ا#/.-, ا+*(ا'& %$ #"!

 ← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

! Figure 2.2 The conceptual linear order of characters is not necessarily the order
that you see on the page. In languages that are written right-to-left, such as Hebrew
and Arabic, it is quite common to also have left-to-right text interspersed, such as
numbers and dollar amounts. With modern Unicode representation concepts, the
order of characters in files matches the conceptual order, and the reversal of displayed
characters is handled by the rendering system, but this may not be true for documents
in older encodings.

are many cases in which you might want to do something different. A tra-
ditional Unix (mbox-format) email file stores a sequence of email messages
(an email folder) in one file, but you might wish to regard each email mes-
sage as a separate document. Many email messages now contain attached
documents, and you might then want to regard the email message and each
contained attachment as separate documents. If an email message has an
attached zip file, you might want to decode the zip file and regard each file
it contains as a separate document. Going in the opposite direction, various
pieces of web software (such as latex2html) take things that you might regard
as a single document (e.g., a Powerpoint file or a LATEX document) and split
them into separate HTML pages for each slide or subsection, stored as sep-
arate files. In these cases, you might want to combine multiple files into a
single document.

More generally, for very long documents, the issue of indexing granularityINDEXING
GRANULARITY arises. For a collection of books, it would usually be a bad idea to index an

Online edition (c)�2009 Cambridge UP

22 2 The term vocabulary and postings lists

entire book as a document. A search for Chinese toys might bring up a book
that mentions China in the first chapter and toys in the last chapter, but this
does not make it relevant to the query. Instead, we may well wish to index
each chapter or paragraph as a mini-document. Matches are then more likely
to be relevant, and since the documents are smaller it will be much easier for
the user to find the relevant passages in the document. But why stop there?
We could treat individual sentences as mini-documents. It becomes clear
that there is a precision/recall tradeoff here. If the units get too small, we
are likely to miss important passages because terms were distributed over
several mini-documents, while if units are too large we tend to get spurious
matches and the relevant information is hard for the user to find.

The problems with large document units can be alleviated by use of ex-
plicit or implicit proximity search (Sections 2.4.2 and 7.2.2), and the trade-
offs in resulting system performance that we are hinting at are discussed
in Chapter 8. The issue of index granularity, and in particular a need to
simultaneously index documents at multiple levels of granularity, appears
prominently in XML retrieval, and is taken up again in Chapter 10. An IR
system should be designed to offer choices of granularity. For this choice to
be made well, the person who is deploying the system must have a good
understanding of the document collection, the users, and their likely infor-
mation needs and usage patterns. For now, we will henceforth assume that
a suitable size document unit has been chosen, together with an appropriate
way of dividing or aggregating files, if needed.

2.2 Determining the vocabulary of terms

2.2.1 Tokenization

Given a character sequence and a defined document unit, tokenization is the
task of chopping it up into pieces, called tokens, perhaps at the same time
throwing away certain characters, such as punctuation. Here is an example
of tokenization:

Input: Friends, Romans, Countrymen, lend me your ears;
Output: Friends Romans Countrymen lend me your ears

These tokens are often loosely referred to as terms or words, but it is some-
times important to make a type/token distinction. A token is an instanceTOKEN

of a sequence of characters in some particular document that are grouped
together as a useful semantic unit for processing. A type is the class of allTYPE

tokens containing the same character sequence. A term is a (perhaps nor-TERM

malized) type that is included in the IR system’s dictionary. The set of index
terms could be entirely distinct from the tokens, for instance, they could be

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 23

semantic identifiers in a taxonomy, but in practice in modern IR systems they
are strongly related to the tokens in the document. However, rather than be-
ing exactly the tokens that appear in the document, they are usually derived
from them by various normalization processes which are discussed in Sec-
tion 2.2.3.2 For example, if the document to be indexed is to sleep perchance to
dream, then there are 5 tokens, but only 4 types (since there are 2 instances of
to). However, if to is omitted from the index (as a stop word, see Section 2.2.2
(page 27)), then there will be only 3 terms: sleep, perchance, and dream.

The major question of the tokenization phase is what are the correct tokens
to use? In this example, it looks fairly trivial: you chop on whitespace and
throw away punctuation characters. This is a starting point, but even for
English there are a number of tricky cases. For example, what do you do
about the various uses of the apostrophe for possession and contractions?

Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t
amusing.

For O’Neill, which of the following is the desired tokenization?

neill
oneill
o’neill
o’ neill
o neill ?

And for aren’t, is it:

aren’t
arent
are n’t
aren t ?

A simple strategy is to just split on all non-alphanumeric characters, but
while o neill looks okay, aren t looks intuitively bad. For all of them,
the choices determine which Boolean queries will match. A query of neill
AND capital will match in three cases but not the other two. In how many
cases would a query of o’neill AND capital match? If no preprocessing of a
query is done, then it would match in only one of the five cases. For either

2. That is, as defined here, tokens that are not indexed (stop words) are not terms, and if mul-
tiple tokens are collapsed together via normalization, they are indexed as one term, under the
normalized form. However, we later relax this definition when discussing classification and
clustering in Chapters 13–18, where there is no index. In these chapters, we drop the require-
ment of inclusion in the dictionary. A term means a normalized word.

Online edition (c)�2009 Cambridge UP

24 2 The term vocabulary and postings lists

Boolean or free text queries, you always want to do the exact same tokeniza-
tion of document and query words, generally by processing queries with the
same tokenizer. This guarantees that a sequence of characters in a text will
always match the same sequence typed in a query.3

These issues of tokenization are language-specific. It thus requires the lan-
guage of the document to be known. Language identification based on clas-LANGUAGE

IDENTIFICATION sifiers that use short character subsequences as features is highly effective;
most languages have distinctive signature patterns (see page 46 for refer-
ences).

For most languages and particular domains within them there are unusual
specific tokens that we wish to recognize as terms, such as the programming
languages C++ and C#, aircraft names like B-52, or a T.V. show name such
as M*A*S*H – which is sufficiently integrated into popular culture that you
find usages such as M*A*S*H-style hospitals. Computer technology has in-
troduced new types of character sequences that a tokenizer should probably
tokenize as a single token, including email addresses (jblack@mail.yahoo.com),
web URLs (http://stuff.big.com/new/specials.html),numeric IP addresses (142.32.48.231),
package tracking numbers (1Z9999W99845399981), and more. One possible
solution is to omit from indexing tokens such as monetary amounts, num-
bers, and URLs, since their presence greatly expands the size of the vocab-
ulary. However, this comes at a large cost in restricting what people can
search for. For instance, people might want to search in a bug database for
the line number where an error occurs. Items such as the date of an email,
which have a clear semantic type, are often indexed separately as document
metadata (see Section 6.1, page 110).

In English, hyphenation is used for various purposes ranging from split-HYPHENS

ting up vowels in words (co-education) to joining nouns as names (Hewlett-
Packard) to a copyediting device to show word grouping (the hold-him-back-
and-drag-him-away maneuver). It is easy to feel that the first example should be
regarded as one token (and is indeed more commonly written as just coedu-
cation), the last should be separated into words, and that the middle case is
unclear. Handling hyphens automatically can thus be complex: it can either
be done as a classification problem, or more commonly by some heuristic
rules, such as allowing short hyphenated prefixes on words, but not longer
hyphenated forms.

Conceptually, splitting on white space can also split what should be re-
garded as a single token. This occurs most commonly with names (San Fran-
cisco, Los Angeles) but also with borrowed foreign phrases (au fait) and com-

3. For the free text case, this is straightforward. The Boolean case is more complex: this tok-
enization may produce multiple terms from one query word. This can be handled by combining
the terms with an AND or as a phrase query (see Section 2.4, page 39). It is harder for a system
to handle the opposite case where the user entered as two terms something that was tokenized
together in the document processing.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 25

pounds that are sometimes written as a single word and sometimes space
separated (such as white space vs. whitespace). Other cases with internal spaces
that we might wish to regard as a single token include phone numbers ((800) 234-
2333) and dates (Mar 11, 1983). Splitting tokens on spaces can cause bad
retrieval results, for example, if a search for York University mainly returns
documents containing New York University. The problems of hyphens and
non-separating whitespace can even interact. Advertisements for air fares
frequently contain items like San Francisco-Los Angeles, where simply doing
whitespace splitting would give unfortunate results. In such cases, issues of
tokenization interact with handling phrase queries (which we discuss in Sec-
tion 2.4 (page 39)), particularly if we would like queries for all of lowercase,
lower-case and lower case to return the same results. The last two can be han-
dled by splitting on hyphens and using a phrase index. Getting the first case
right would depend on knowing that it is sometimes written as two words
and also indexing it in this way. One effective strategy in practice, which
is used by some Boolean retrieval systems such as Westlaw and Lexis-Nexis
(Example 1.1), is to encourage users to enter hyphens wherever they may be
possible, and whenever there is a hyphenated form, the system will general-
ize the query to cover all three of the one word, hyphenated, and two word
forms, so that a query for over-eager will search for over-eager OR “over eager”
OR overeager. However, this strategy depends on user training, since if you
query using either of the other two forms, you get no generalization.

Each new language presents some new issues. For instance, French has a
variant use of the apostrophe for a reduced definite article ‘the’ before a word
beginning with a vowel (e.g., l’ensemble) and has some uses of the hyphen
with postposed clitic pronouns in imperatives and questions (e.g., donne-
moi ‘give me’). Getting the first case correct will affect the correct indexing
of a fair percentage of nouns and adjectives: you would want documents
mentioning both l’ensemble and un ensemble to be indexed under ensemble.
Other languages make the problem harder in new ways. German writes
compound nouns without spaces (e.g., Computerlinguistik ‘computational lin-COMPOUNDS

guistics’; Lebensversicherungsgesellschaftsangestellter ‘life insurance company
employee’). Retrieval systems for German greatly benefit from the use of a
compound-splitter module, which is usually implemented by seeing if a wordCOMPOUND-SPLITTER

can be subdivided into multiple words that appear in a vocabulary. This phe-
nomenon reaches its limit case with major East Asian Languages (e.g., Chi-
nese, Japanese, Korean, and Thai), where text is written without any spaces
between words. An example is shown in Figure 2.3. One approach here is to
perform word segmentation as prior linguistic processing. Methods of wordWORD SEGMENTATION

segmentation vary from having a large vocabulary and taking the longest
vocabulary match with some heuristics for unknown words to the use of
machine learning sequence models, such as hidden Markov models or condi-
tional random fields, trained over hand-segmented words (see the references

Online edition (c)�2009 Cambridge UP

26 2 The term vocabulary and postings lists

! Figure 2.3 The standard unsegmented form of Chinese text using the simplified
characters of mainland China. There is no whitespace between words, not even be-
tween sentences – the apparent space after the Chinese period (◦) is just a typograph-
ical illusion caused by placing the character on the left side of its square box. The
first sentence is just words in Chinese characters with no spaces between them. The
second and third sentences include Arabic numerals and punctuation breaking up
the Chinese characters.

! Figure 2.4 Ambiguities in Chinese word segmentation. The two characters can
be treated as one word meaning ‘monk’ or as a sequence of two words meaning ‘and’
and ‘still’.

a an and are as at be by for from
has he in is it its of on that the
to was were will with

! Figure 2.5 A stop list of 25 semantically non-selective words which are common
in Reuters-RCV1.

in Section 2.5). Since there are multiple possible segmentations of character
sequences (see Figure 2.4), all such methods make mistakes sometimes, and
so you are never guaranteed a consistent unique tokenization. The other ap-
proach is to abandon word-based indexing and to do all indexing via just
short subsequences of characters (character k-grams), regardless of whether
particular sequences cross word boundaries or not. Three reasons why this
approach is appealing are that an individual Chinese character is more like a
syllable than a letter and usually has some semantic content, that most words
are short (the commonest length is 2 characters), and that, given the lack of
standardization of word breaking in the writing system, it is not always clear
where word boundaries should be placed anyway. Even in English, some
cases of where to put word boundaries are just orthographic conventions –
think of notwithstanding vs. not to mention or into vs. on to – but people are
educated to write the words with consistent use of spaces.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 27

2.2.2 Dropping common terms: stop words

Sometimes, some extremely common words which would appear to be of
little value in helping select documents matching a user need are excluded
from the vocabulary entirely. These words are called stop words. The generalSTOP WORDS

strategy for determining a stop list is to sort the terms by collection frequencyCOLLECTION
FREQUENCY (the total number of times each term appears in the document collection),

and then to take the most frequent terms, often hand-filtered for their se-
mantic content relative to the domain of the documents being indexed, as
a stop list, the members of which are then discarded during indexing. AnSTOP LIST

example of a stop list is shown in Figure 2.5. Using a stop list significantly
reduces the number of postings that a system has to store; we will present
some statistics on this in Chapter 5 (see Table 5.1, page 87). And a lot of
the time not indexing stop words does little harm: keyword searches with
terms like the and by don’t seem very useful. However, this is not true for
phrase searches. The phrase query “President of the United States”, which con-
tains two stop words, is more precise than President AND “United States”. The
meaning of flights to London is likely to be lost if the word to is stopped out. A
search for Vannevar Bush’s article As we may think will be difficult if the first
three words are stopped out, and the system searches simply for documents
containing the word think. Some special query types are disproportionately
affected. Some song titles and well known pieces of verse consist entirely of
words that are commonly on stop lists (To be or not to be, Let It Be, I don’t want
to be, . . .).

The general trend in IR systems over time has been from standard use of
quite large stop lists (200–300 terms) to very small stop lists (7–12 terms)
to no stop list whatsoever. Web search engines generally do not use stop
lists. Some of the design of modern IR systems has focused precisely on
how we can exploit the statistics of language so as to be able to cope with
common words in better ways. We will show in Section 5.3 (page 95) how
good compression techniques greatly reduce the cost of storing the postings
for common words. Section 6.2.1 (page 117) then discusses how standard
term weighting leads to very common words having little impact on doc-
ument rankings. Finally, Section 7.1.5 (page 140) shows how an IR system
with impact-sorted indexes can terminate scanning a postings list early when
weights get small, and hence common words do not cause a large additional
processing cost for the average query, even though postings lists for stop
words are very long. So for most modern IR systems, the additional cost of
including stop words is not that big – neither in terms of index size nor in
terms of query processing time.

Online edition (c)�2009 Cambridge UP

28 2 The term vocabulary and postings lists

Query term Terms in documents that should be matched
Windows Windows
windows Windows, windows, window
window window, windows

! Figure 2.6 An example of how asymmetric expansion of query terms can usefully
model users’ expectations.

2.2.3 Normalization (equivalence classing of terms)

Having broken up our documents (and also our query) into tokens, the easy
case is if tokens in the query just match tokens in the token list of the doc-
ument. However, there are many cases when two character sequences are
not quite the same but you would like a match to occur. For instance, if you
search for USA, you might hope to also match documents containing U.S.A.

Token normalization is the process of canonicalizing tokens so that matchesTOKEN
NORMALIZATION occur despite superficial differences in the character sequences of the to-

kens.4 The most standard way to normalize is to implicitly create equivalenceEQUIVALENCE CLASSES

classes, which are normally named after one member of the set. For instance,
if the tokens anti-discriminatory and antidiscriminatory are both mapped onto
the term antidiscriminatory, in both the document text and queries, then searches
for one term will retrieve documents that contain either.

The advantage of just using mapping rules that remove characters like hy-
phens is that the equivalence classing to be done is implicit, rather than being
fully calculated in advance: the terms that happen to become identical as the
result of these rules are the equivalence classes. It is only easy to write rules
of this sort that remove characters. Since the equivalence classes are implicit,
it is not obvious when you might want to add characters. For instance, it
would be hard to know to turn antidiscriminatory into anti-discriminatory.

An alternative to creating equivalence classes is to maintain relations be-
tween unnormalized tokens. This method can be extended to hand-constructed
lists of synonyms such as car and automobile, a topic we discuss further in
Chapter 9. These term relationships can be achieved in two ways. The usual
way is to index unnormalized tokens and to maintain a query expansion list
of multiple vocabulary entries to consider for a certain query term. A query
term is then effectively a disjunction of several postings lists. The alterna-
tive is to perform the expansion during index construction. When the doc-
ument contains automobile, we index it under car as well (and, usually, also
vice-versa). Use of either of these methods is considerably less efficient than
equivalence classing, as there are more postings to store and merge. The first

4. It is also often referred to as term normalization, but we prefer to reserve the name term for the
output of the normalization process.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 29

method adds a query expansion dictionary and requires more processing at
query time, while the second method requires more space for storing post-
ings. Traditionally, expanding the space required for the postings lists was
seen as more disadvantageous, but with modern storage costs, the increased
flexibility that comes from distinct postings lists is appealing.

These approaches are more flexible than equivalence classes because the
expansion lists can overlap while not being identical. This means there can
be an asymmetry in expansion. An example of how such an asymmetry can
be exploited is shown in Figure 2.6: if the user enters windows, we wish to
allow matches with the capitalized Windows operating system, but this is not
plausible if the user enters window, even though it is plausible for this query
to also match lowercase windows.

The best amount of equivalence classing or query expansion to do is a
fairly open question. Doing some definitely seems a good idea. But doing a
lot can easily have unexpected consequences of broadening queries in unin-
tended ways. For instance, equivalence-classing U.S.A. and USA to the latter
by deleting periods from tokens might at first seem very reasonable, given
the prevalent pattern of optional use of periods in acronyms. However, if I
put in as my query term C.A.T., I might be rather upset if it matches every
appearance of the word cat in documents.5

Below we present some of the forms of normalization that are commonly
employed and how they are implemented. In many cases they seem helpful,
but they can also do harm. In fact, you can worry about many details of
equivalence classing, but it often turns out that providing processing is done
consistently to the query and to documents, the fine details may not have
much aggregate effect on performance.

Accents and diacritics. Diacritics on characters in English have a fairly
marginal status, and we might well want cliché and cliche to match, or naive
and naïve. This can be done by normalizing tokens to remove diacritics. In
many other languages, diacritics are a regular part of the writing system and
distinguish different sounds. Occasionally words are distinguished only by
their accents. For instance, in Spanish, peña is ‘a cliff’, while pena is ‘sorrow’.
Nevertheless, the important question is usually not prescriptive or linguistic
but is a question of how users are likely to write queries for these words. In
many cases, users will enter queries for words without diacritics, whether
for reasons of speed, laziness, limited software, or habits born of the days
when it was hard to use non-ASCII text on many computer systems. In these
cases, it might be best to equate all words to a form without diacritics.

5. At the time we wrote this chapter (Aug. 2005), this was actually the case on Google: the top
result for the query C.A.T. was a site about cats, the Cat Fanciers Web Site http://www.fanciers.com/.

Online edition (c)�2009 Cambridge UP

30 2 The term vocabulary and postings lists

Capitalization/case-folding. A common strategy is to do case-folding by re-CASE-FOLDING

ducing all letters to lower case. Often this is a good idea: it will allow in-
stances of Automobile at the beginning of a sentence to match with a query of
automobile. It will also help on a web search engine when most of your users
type in ferrari when they are interested in a Ferrari car. On the other hand,
such case folding can equate words that might better be kept apart. Many
proper nouns are derived from common nouns and so are distinguished only
by case, including companies (General Motors, The Associated Press), govern-
ment organizations (the Fed vs. fed) and person names (Bush, Black). We al-
ready mentioned an example of unintended query expansion with acronyms,
which involved not only acronym normalization (C.A.T. → CAT) but also
case-folding (CAT→ cat).

For English, an alternative to making every token lowercase is to just make
some tokens lowercase. The simplest heuristic is to convert to lowercase
words at the beginning of a sentence and all words occurring in a title that is
all uppercase or in which most or all words are capitalized. These words are
usually ordinary words that have been capitalized. Mid-sentence capitalized
words are left as capitalized (which is usually correct). This will mostly avoid
case-folding in cases where distinctions should be kept apart. The same task
can be done more accurately by a machine learning sequence model which
uses more features to make the decision of when to case-fold. This is known
as truecasing. However, trying to get capitalization right in this way probablyTRUECASING

doesn’t help if your users usually use lowercase regardless of the correct case
of words. Thus, lowercasing everything often remains the most practical
solution.

Other issues in English. Other possible normalizations are quite idiosyn-
cratic and particular to English. For instance, you might wish to equate
ne’er and never or the British spelling colour and the American spelling color.
Dates, times and similar items come in multiple formats, presenting addi-
tional challenges. You might wish to collapse together 3/12/91 and Mar. 12,
1991. However, correct processing here is complicated by the fact that in the
U.S., 3/12/91 is Mar. 12, 1991, whereas in Europe it is 3 Dec 1991.

Other languages. English has maintained a dominant position on the WWW;
approximately 60% of web pages are in English (Gerrand 2007). But that still
leaves 40% of the web, and the non-English portion might be expected to
grow over time, since less than one third of Internet users and less than 10%
of the world’s population primarily speak English. And there are signs of
change: Sifry (2007) reports that only about one third of blog posts are in
English.

Other languages again present distinctive issues in equivalence classing.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 31

! Figure 2.7 Japanese makes use of multiple intermingled writing systems and,
like Chinese, does not segment words. The text is mainly Chinese characters with
the hiragana syllabary for inflectional endings and function words. The part in latin
letters is actually a Japanese expression, but has been taken up as the name of an
environmental campaign by 2004 Nobel Peace Prize winner Wangari Maathai. His
name is written using the katakana syllabary in the middle of the first line. The first
four characters of the final line express a monetary amount that we would want to
match with ¥500,000 (500,000 Japanese yen).

The French word for the has distinctive forms based not only on the gender
(masculine or feminine) and number of the following noun, but also depend-
ing on whether the following word begins with a vowel: le, la, l’, les. We may
well wish to equivalence class these various forms of the. German has a con-
vention whereby vowels with an umlaut can be rendered instead as a two
vowel digraph. We would want to treat Schütze and Schuetze as equivalent.

Japanese is a well-known difficult writing system, as illustrated in Fig-
ure 2.7. Modern Japanese is standardly an intermingling of multiple alpha-
bets, principally Chinese characters, two syllabaries (hiragana and katakana)
and western characters (Latin letters, Arabic numerals, and various sym-
bols). While there are strong conventions and standardization through the
education system over the choice of writing system, in many cases the same
word can be written with multiple writing systems. For example, a word
may be written in katakana for emphasis (somewhat like italics). Or a word
may sometimes be written in hiragana and sometimes in Chinese charac-
ters. Successful retrieval thus requires complex equivalence classing across
the writing systems. In particular, an end user might commonly present a
query entirely in hiragana, because it is easier to type, just as Western end
users commonly use all lowercase.

Document collections being indexed can include documents from many
different languages. Or a single document can easily contain text from mul-
tiple languages. For instance, a French email might quote clauses from a
contract document written in English. Most commonly, the language is de-
tected and language-particular tokenization and normalization rules are ap-
plied at a predetermined granularity, such as whole documents or individual
paragraphs, but this still will not correctly deal with cases where language
changes occur for brief quotations. When document collections contain mul-

Online edition (c)�2009 Cambridge UP

32 2 The term vocabulary and postings lists

tiple languages, a single index may have to contain terms of several lan-
guages. One option is to run a language identification classifier on docu-
ments and then to tag terms in the vocabulary for their language. Or this
tagging can simply be omitted, since it is relatively rare for the exact same
character sequence to be a word in different languages.

When dealing with foreign or complex words, particularly foreign names,
the spelling may be unclear or there may be variant transliteration standards
giving different spellings (for example, Chebyshev and Tchebycheff or Beijing
and Peking). One way of dealing with this is to use heuristics to equiva-
lence class or expand terms with phonetic equivalents. The traditional and
best known such algorithm is the Soundex algorithm, which we cover in
Section 3.4 (page 63).

2.2.4 Stemming and lemmatization

For grammatical reasons, documents are going to use different forms of a
word, such as organize, organizes, and organizing. Additionally, there are fami-
lies of derivationally related words with similar meanings, such as democracy,
democratic, and democratization. In many situations, it seems as if it would be
useful for a search for one of these words to return documents that contain
another word in the set.

The goal of both stemming and lemmatization is to reduce inflectional
forms and sometimes derivationally related forms of a word to a common
base form. For instance:

am, are, is⇒ be
car, cars, car’s, cars’⇒ car

The result of this mapping of text will be something like:

the boy’s cars are different colors⇒
the boy car be differ color

However, the two words differ in their flavor. Stemming usually refers toSTEMMING

a crude heuristic process that chops off the ends of words in the hope of
achieving this goal correctly most of the time, and often includes the re-
moval of derivational affixes. Lemmatization usually refers to doing thingsLEMMATIZATION

properly with the use of a vocabulary and morphological analysis of words,
normally aiming to remove inflectional endings only and to return the base
or dictionary form of a word, which is known as the lemma. If confrontedLEMMA

with the token saw, stemming might return just s, whereas lemmatization
would attempt to return either see or saw depending on whether the use of
the token was as a verb or a noun. The two may also differ in that stemming
most commonly collapses derivationally related words, whereas lemmatiza-
tion commonly only collapses the different inflectional forms of a lemma.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 33

Linguistic processing for stemming or lemmatization is often done by an ad-
ditional plug-in component to the indexing process, and a number of such
components exist, both commercial and open-source.

The most common algorithm for stemming English, and one that has re-
peatedly been shown to be empirically very effective, is Porter’s algorithmPORTER STEMMER

(Porter 1980). The entire algorithm is too long and intricate to present here,
but we will indicate its general nature. Porter’s algorithm consists of 5 phases
of word reductions, applied sequentially. Within each phase there are var-
ious conventions to select rules, such as selecting the rule from each rule
group that applies to the longest suffix. In the first phase, this convention is
used with the following rule group:

(2.1) Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

Many of the later rules use a concept of the measure of a word, which loosely
checks the number of syllables to see whether a word is long enough that it
is reasonable to regard the matching portion of a rule as a suffix rather than
as part of the stem of a word. For example, the rule:

(m > 1) EMENT →

would map replacement to replac, but not cement to c. The official site for the
Porter Stemmer is:

http://www.tartarus.org/˜martin/PorterStemmer/

Other stemmers exist, including the older, one-pass Lovins stemmer (Lovins
1968), and newer entrants like the Paice/Husk stemmer (Paice 1990); see:

http://www.cs.waikato.ac.nz/˜eibe/stemmers/
http://www.comp.lancs.ac.uk/computing/research/stemming/

Figure 2.8 presents an informal comparison of the different behaviors of these
stemmers. Stemmers use language-specific rules, but they require less know-
ledge than a lemmatizer, which needs a complete vocabulary and morpho-
logical analysis to correctly lemmatize words. Particular domains may also
require special stemming rules. However, the exact stemmed form does not
matter, only the equivalence classes it forms.

Rather than using a stemmer, you can use a lemmatizer, a tool from Nat-LEMMATIZER

ural Language Processing which does full morphological analysis to accu-
rately identify the lemma for each word. Doing full morphological analysis
produces at most very modest benefits for retrieval. It is hard to say more,

Online edition (c)�2009 Cambridge UP

34 2 The term vocabulary and postings lists

Sample text: Such an analysis can reveal features that are not easily visible
from the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to
interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur of express
that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that is mor
biolog transp and access to interpret

! Figure 2.8 A comparison of three stemming algorithms on a sample text.

because either form of normalization tends not to improve English informa-
tion retrieval performance in aggregate – at least not by very much. While
it helps a lot for some queries, it equally hurts performance a lot for others.
Stemming increases recall while harming precision. As an example of what
can go wrong, note that the Porter stemmer stems all of the following words:

operate operating operates operation operative operatives operational

to oper. However, since operate in its various forms is a common verb, we
would expect to lose considerable precision on queries such as the following
with Porter stemming:

operational AND research
operating AND system
operative AND dentistry

For a case like this, moving to using a lemmatizer would not completely fix
the problem because particular inflectional forms are used in particular col-
locations: a sentence with the words operate and system is not a good match
for the query operating AND system. Getting better value from term normaliza-
tion depends more on pragmatic issues of word use than on formal issues of
linguistic morphology.

The situation is different for languages with much more morphology (such
as Spanish, German, and Finnish). Results in the European CLEF evaluations
have repeatedly shown quite large gains from the use of stemmers (and com-
pound splitting for languages like German); see the references in Section 2.5.

Online edition (c)�2009 Cambridge UP

2.2 Determining the vocabulary of terms 35

? Exercise 2.1 [!]

Are the following statements true or false?

a. In a Boolean retrieval system, stemming never lowers precision.

b. In a Boolean retrieval system, stemming never lowers recall.

c. Stemming increases the size of the vocabulary.

d. Stemming should be invoked at indexing time but not while processing a query.

Exercise 2.2 [!]

Suggest what normalized form should be used for these words (including the word
itself as a possibility):

a. ’Cos

b. Shi’ite

c. cont’d

d. Hawai’i

e. O’Rourke

Exercise 2.3 [!]

The following pairs of words are stemmed to the same form by the Porter stemmer.
Which pairs would you argue shouldn’t be conflated. Give your reasoning.

a. abandon/abandonment

b. absorbency/absorbent

c. marketing/markets

d. university/universe

e. volume/volumes

Exercise 2.4 [!]

For the Porter stemmer rule group shown in (2.1):

a. What is the purpose of including an identity rule such as SS→ SS?

b. Applying just this rule group, what will the following words be stemmed to?

circus canaries boss

c. What rule should be added to correctly stem pony?

d. The stemming for ponies and pony might seem strange. Does it have a deleterious
effect on retrieval? Why or why not?

Online edition (c)�2009 Cambridge UP

36 2 The term vocabulary and postings lists

! Figure 2.9 Postings lists with skip pointers. The postings intersection can use a
skip pointer when the end point is still less than the item on the other list.

2.3 Faster postings list intersection via skip pointers

In the remainder of this chapter, we will discuss extensions to postings list
data structures and ways to increase the efficiency of using postings lists. Re-
call the basic postings list intersection operation from Section 1.3 (page 10):
we walk through the two postings lists simultaneously, in time linear in the
total number of postings entries. If the list lengths are m and n, the intersec-
tion takes O(m + n) operations. Can we do better than this? That is, empiri-
cally, can we usually process postings list intersection in sublinear time? We
can, if the index isn’t changing too fast.

One way to do this is to use a skip list by augmenting postings lists withSKIP LIST

skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are
effectively shortcuts that allow us to avoid processing parts of the postings
list that will not figure in the search results. The two questions are then where
to place skip pointers and how to do efficient merging using skip pointers.

Consider first efficient merging, with Figure 2.9 as an example. Suppose
we’ve stepped through the lists in the figure until we have matched 8 on
each list and moved it to the results list. We advance both pointers, giving us
16 on the upper list and 41 on the lower list. The smallest item is then the

element 16 on the top list. Rather than simply advancing the upper pointer,
we first check the skip list pointer and note that 28 is also less than 41. Hence
we can follow the skip list pointer, and then we advance the upper pointer
to 28 . We thus avoid stepping to 19 and 23 on the upper list. A number
of variant versions of postings list intersection with skip pointers is possible
depending on when exactly you check the skip pointer. One version is shown

Online edition (c)�2009 Cambridge UP

2.3 Faster postings list intersection via skip pointers 37

INTERSECTWITHSKIPS(p1, p2)
1 answer ← 〈 〉
2 while p1 '= NIL and p2 '= NIL
3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

! Figure 2.10 Postings lists intersection with skip pointers.

in Figure 2.10. Skip pointers will only be available for the original postings
lists. For an intermediate result in a complex query, the call hasSkip(p) will
always return false. Finally, note that the presence of skip pointers only helps
for AND queries, not for OR queries.

Where do we place skips? There is a tradeoff. More skips means shorter
skip spans, and that we are more likely to skip. But it also means lots of
comparisons to skip pointers, and lots of space storing skip pointers. Fewer
skips means few pointer comparisons, but then long skip spans which means
that there will be fewer opportunities to skip. A simple heuristic for placing
skips, which has been found to work well in practice, is that for a postings
list of length P, use

√
P evenly-spaced skip pointers. This heuristic can be

improved upon; it ignores any details of the distribution of query terms.
Building effective skip pointers is easy if an index is relatively static; it

is harder if a postings list keeps changing because of updates. A malicious
deletion strategy can render skip lists ineffective.

Choosing the optimal encoding for an inverted index is an ever-changing
game for the system builder, because it is strongly dependent on underly-
ing computer technologies and their relative speeds and sizes. Traditionally,
CPUs were slow, and so highly compressed techniques were not optimal.
Now CPUs are fast and disk is slow, so reducing disk postings list size dom-
inates. However, if you’re running a search engine with everything in mem-

Online edition (c)�2009 Cambridge UP

38 2 The term vocabulary and postings lists

ory then the equation changes again. We discuss the impact of hardware
parameters on index construction time in Section 4.1 (page 68) and the im-
pact of index size on system speed in Chapter 5.

? Exercise 2.5 [!]

Why are skip pointers not useful for queries of the form x OR y?

Exercise 2.6 [!]

We have a two-word query. For one term the postings list consists of the following 16
entries:

[4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180]

and for the other it is the one entry postings list:

[47].

Work out how many comparisons would be done to intersect the two postings lists
with the following two strategies. Briefly justify your answers:

a. Using standard postings lists

b. Using postings lists stored with skip pointers, with a skip length of
√

P, as sug-
gested in Section 2.3.

Exercise 2.7 [!]

Consider a postings intersection between this postings list, with skip pointers:

3 5 9 15 24 39 60 68 75 81 84 89 92 96 97 100 115

and the following intermediate result postings list (which hence has no skip pointers):

3 5 89 95 97 99 100 101

Trace through the postings intersection algorithm in Figure 2.10 (page 37).

a. How often is a skip pointer followed (i.e., p1 is advanced to skip(p1))?

b. How many postings comparisons will be made by this algorithm while intersect-
ing the two lists?

c. How many postings comparisons would be made if the postings lists are inter-
sected without the use of skip pointers?

Online edition (c)�2009 Cambridge UP

2.4 Positional postings and phrase queries 39

2.4 Positional postings and phrase queries

Many complex or technical concepts and many organization and product
names are multiword compounds or phrases. We would like to be able to
pose a query such as Stanford University by treating it as a phrase so that a
sentence in a document like The inventor Stanford Ovshinsky never went to uni-
versity. is not a match. Most recent search engines support a double quotes
syntax (“stanford university”) for phrase queries, which has proven to be veryPHRASE QUERIES

easily understood and successfully used by users. As many as 10% of web
queries are phrase queries, and many more are implicit phrase queries (such
as person names), entered without use of double quotes. To be able to sup-
port such queries, it is no longer sufficient for postings lists to be simply lists
of documents that contain individual terms. In this section we consider two
approaches to supporting phrase queries and their combination. A search
engine should not only support phrase queries, but implement them effi-
ciently. A related but distinct concept is term proximity weighting, where a
document is preferred to the extent that the query terms appear close to each
other in the text. This technique is covered in Section 7.2.2 (page 144) in the
context of ranked retrieval.

2.4.1 Biword indexes

One approach to handling phrases is to consider every pair of consecutive
terms in a document as a phrase. For example, the text Friends, Romans,
Countrymen would generate the biwords:BIWORD INDEX

friends romans
romans countrymen

In this model, we treat each of these biwords as a vocabulary term. Being
able to process two-word phrase queries is immediate. Longer phrases can
be processed by breaking them down. The query stanford university palo alto
can be broken into the Boolean query on biwords:

“stanford university” AND “university palo” AND “palo alto”

This query could be expected to work fairly well in practice, but there can
and will be occasional false positives. Without examining the documents,
we cannot verify that the documents matching the above Boolean query do
actually contain the original 4 word phrase.

Among possible queries, nouns and noun phrases have a special status in
describing the concepts people are interested in searching for. But related
nouns can often be divided from each other by various function words, in
phrases such as the abolition of slavery or renegotiation of the constitution. These
needs can be incorporated into the biword indexing model in the following

Online edition (c)�2009 Cambridge UP

40 2 The term vocabulary and postings lists

way. First, we tokenize the text and perform part-of-speech-tagging.6 We
can then group terms into nouns, including proper nouns, (N) and function
words, including articles and prepositions, (X), among other classes. Now
deem any string of terms of the form NX*N to be an extended biword. Each
such extended biword is made a term in the vocabulary. For example:

renegotiation of the constitution
N X X N

To process a query using such an extended biword index, we need to also
parse it into N’s and X’s, and then segment the query into extended biwords,
which can be looked up in the index.

This algorithm does not always work in an intuitively optimal manner
when parsing longer queries into Boolean queries. Using the above algo-
rithm, the query

cost overruns on a power plant

is parsed into

“cost overruns” AND “overruns power” AND “power plant”

whereas it might seem a better query to omit the middle biword. Better
results can be obtained by using more precise part-of-speech patterns that
define which extended biwords should be indexed.

The concept of a biword index can be extended to longer sequences of
words, and if the index includes variable length word sequences, it is gen-
erally referred to as a phrase index. Indeed, searches for a single term arePHRASE INDEX

not naturally handled in a biword index (you would need to scan the dic-
tionary for all biwords containing the term), and so we also need to have an
index of single-word terms. While there is always a chance of false positive
matches, the chance of a false positive match on indexed phrases of length 3
or more becomes very small indeed. But on the other hand, storing longer
phrases has the potential to greatly expand the vocabulary size. Maintain-
ing exhaustive phrase indexes for phrases of length greater than two is a
daunting prospect, and even use of an exhaustive biword dictionary greatly
expands the size of the vocabulary. However, towards the end of this sec-
tion we discuss the utility of the strategy of using a partial phrase index in a
compound indexing scheme.

6. Part of speech taggers classify words as nouns, verbs, etc. – or, in practice, often as finer-
grained classes like “plural proper noun”. Many fairly accurate (c. 96% per-tag accuracy) part-
of-speech taggers now exist, usually trained by machine learning methods on hand-tagged text.
See, for instance, Manning and Schütze (1999, ch. 10).

Online edition (c)�2009 Cambridge UP

2.4 Positional postings and phrase queries 41

to, 993427:
〈 1, 6: 〈7, 18, 33, 72, 86, 231〉;

2, 5: 〈1, 17, 74, 222, 255〉;
4, 5: 〈8, 16, 190, 429, 433〉;
5, 2: 〈363, 367〉;
7, 3: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1, 2: 〈17, 25〉;

4, 5: 〈17, 191, 291, 430, 434〉;
5, 3: 〈14, 19, 101〉; . . . 〉

! Figure 2.11 Positional index example. The word to has a document frequency
993,477, and occurs 6 times in document 1 at positions 7, 18, 33, etc.

2.4.2 Positional indexes

For the reasons given, a biword index is not the standard solution. Rather,
a positional index is most commonly employed. Here, for each term in thePOSITIONAL INDEX

vocabulary, we store postings of the form docID: 〈position1, position2, . . . 〉,
as shown in Figure 2.11, where each position is a token index in the docu-
ment. Each posting will also usually record the term frequency, for reasons
discussed in Chapter 6.

To process a phrase query, you still need to access the inverted index en-
tries for each distinct term. As before, you would start with the least frequent
term and then work to further restrict the list of possible candidates. In the
merge operation, the same general technique is used as before, but rather
than simply checking that both terms are in a document, you also need to
check that their positions of appearance in the document are compatible with
the phrase query being evaluated. This requires working out offsets between
the words.

✎ Example 2.1: Satisfying phrase queries. Suppose the postings lists for to and
be are as in Figure 2.11, and the query is “to be or not to be”. The postings lists to access
are: to, be, or, not. We will examine intersecting the postings lists for to and be. We
first look for documents that contain both terms. Then, we look for places in the lists
where there is an occurrence of be with a token index one higher than a position of to,
and then we look for another occurrence of each word with token index 4 higher than
the first occurrence. In the above lists, the pattern of occurrences that is a possible
match is:

to: 〈. . . ; 4:〈. . . ,429,433〉; . . . 〉
be: 〈. . . ; 4:〈. . . ,430,434〉; . . . 〉

Online edition (c)�2009 Cambridge UP

42 2 The term vocabulary and postings lists

POSITIONALINTERSECT(p1, p2, k)
1 answer ← 〈 〉
2 while p1 '= NIL and p2 '= NIL
3 do if docID(p1) = docID(p2)
4 then l ← 〈 〉
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 '= NIL
8 do while pp2 '= NIL
9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then ADD(l, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 ← next(pp2)
14 while l '= 〈 〉 and |l[0]− pos(pp1)| > k
15 do DELETE(l[0])
16 for each ps ∈ l
17 do ADD(answer, 〈docID(p1), pos(pp1), ps〉)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

! Figure 2.12 An algorithm for proximity intersection of postings lists p1 and p2.
The algorithm finds places where the two terms appear within k words of each other
and returns a list of triples giving docID and the term position in p1 and p2.

The same general method is applied for within k word proximity searches,
of the sort we saw in Example 1.1 (page 15):

employment /3 place

Here, /k means “within k words of (on either side)”. Clearly, positional in-
dexes can be used for such queries; biword indexes cannot. We show in
Figure 2.12 an algorithm for satisfying within k word proximity searches; it
is further discussed in Exercise 2.12.

Positional index size. Adopting a positional index expands required post-
ings storage significantly, even if we compress position values/offsets as we

Online edition (c)�2009 Cambridge UP

2.4 Positional postings and phrase queries 43

will discuss in Section 5.3 (page 95). Indeed, moving to a positional index
also changes the asymptotic complexity of a postings intersection operation,
because the number of items to check is now bounded not by the number of
documents but by the total number of tokens in the document collection T.
That is, the complexity of a Boolean query is Θ(T) rather than Θ(N). How-
ever, most applications have little choice but to accept this, since most users
now expect to have the functionality of phrase and proximity searches.

Let’s examine the space implications of having a positional index. A post-
ing now needs an entry for each occurrence of a term. The index size thus
depends on the average document size. The average web page has less than
1000 terms, but documents like SEC stock filings, books, and even some epic
poems easily reach 100,000 terms. Consider a term with frequency 1 in 1000
terms on average. The result is that large documents cause an increase of two
orders of magnitude in the space required to store the postings list:

Expected Expected entries
Document size postings in positional posting
1000 1 1
100,000 1 100

While the exact numbers depend on the type of documents and the language
being indexed, some rough rules of thumb are to expect a positional index to
be 2 to 4 times as large as a non-positional index, and to expect a compressed
positional index to be about one third to one half the size of the raw text
(after removal of markup, etc.) of the original uncompressed documents.
Specific numbers for an example collection are given in Table 5.1 (page 87)
and Table 5.6 (page 103).

2.4.3 Combination schemes

The strategies of biword indexes and positional indexes can be fruitfully
combined. If users commonly query on particular phrases, such as Michael
Jackson, it is quite inefficient to keep merging positional postings lists. A
combination strategy uses a phrase index, or just a biword index, for certain
queries and uses a positional index for other phrase queries. Good queries
to include in the phrase index are ones known to be common based on re-
cent querying behavior. But this is not the only criterion: the most expensive
phrase queries to evaluate are ones where the individual words are com-
mon but the desired phrase is comparatively rare. Adding Britney Spears as
a phrase index entry may only give a speedup factor to that query of about
3, since most documents that mention either word are valid results, whereas
adding The Who as a phrase index entry may speed up that query by a factor
of 1000. Hence, having the latter is more desirable, even if it is a relatively
less common query.

Online edition (c)�2009 Cambridge UP

44 2 The term vocabulary and postings lists

Williams et al. (2004) evaluate an even more sophisticated scheme which
employs indexes of both these sorts and additionally a partial next word
index as a halfway house between the first two strategies. For each term, a
next word index records terms that follow it in a document. They concludeNEXT WORD INDEX

that such a strategy allows a typical mixture of web phrase queries to be
completed in one quarter of the time taken by use of a positional index alone,
while taking up 26% more space than use of a positional index alone.

? Exercise 2.8 [!]
Assume a biword index. Give an example of a document which will be returned
for a query of New York University but is actually a false positive which should not be
returned.

Exercise 2.9 [!]
Shown below is a portion of a positional index in the format: term: doc1: 〈position1,
position2, . . . 〉; doc2: 〈position1, position2, . . . 〉; etc.

angels: 2: 〈36,174,252,651〉; 4: 〈12,22,102,432〉; 7: 〈17〉;
fools: 2: 〈1,17,74,222〉; 4: 〈8,78,108,458〉; 7: 〈3,13,23,193〉;
fear: 2: 〈87,704,722,901〉; 4: 〈13,43,113,433〉; 7: 〈18,328,528〉;
in: 2: 〈3,37,76,444,851〉; 4: 〈10,20,110,470,500〉; 7: 〈5,15,25,195〉;
rush: 2: 〈2,66,194,321,702〉; 4: 〈9,69,149,429,569〉; 7: 〈4,14,404〉;
to: 2: 〈47,86,234,999〉; 4: 〈14,24,774,944〉; 7: 〈199,319,599,709〉;
tread: 2: 〈57,94,333〉; 4: 〈15,35,155〉; 7: 〈20,320〉;
where: 2: 〈67,124,393,1001〉; 4: 〈11,41,101,421,431〉; 7: 〈16,36,736〉;

Which document(s) if any match each of the following queries, where each expression
within quotes is a phrase query?

a. “fools rush in”
b. “fools rush in” AND “angels fear to tread”

Exercise 2.10 [!]
Consider the following fragment of a positional index with the format:

word: document: 〈position, position, . . .〉; document: 〈position, . . .〉
. . .

Gates: 1: 〈3〉; 2: 〈6〉; 3: 〈2,17〉; 4: 〈1〉;
IBM: 4: 〈3〉; 7: 〈14〉;
Microsoft: 1: 〈1〉; 2: 〈1,21〉; 3: 〈3〉; 5: 〈16,22,51〉;

The /k operator, word1 /k word2 finds occurrences of word1 within k words of word2 (on
either side), where k is a positive integer argument. Thus k = 1 demands that word1
be adjacent to word2.

a. Describe the set of documents that satisfy the query Gates /2 Microsoft.
b. Describe each set of values for k for which the query Gates /k Microsoft returns a

different set of documents as the answer.

Online edition (c)�2009 Cambridge UP

2.5 References and further reading 45

Exercise 2.11 [!!]
Consider the general procedure for merging two positional postings lists for a given
document, to determine the document positions where a document satisfies a /k
clause (in general there can be multiple positions at which each term occurs in a sin-
gle document). We begin with a pointer to the position of occurrence of each term
and move each pointer along the list of occurrences in the document, checking as we
do so whether we have a hit for /k. Each move of either pointer counts as a step. Let
L denote the total number of occurrences of the two terms in the document. What is
the big-O complexity of the merge procedure, if we wish to have postings including
positions in the result?

Exercise 2.12 [!!]
Consider the adaptation of the basic algorithm for intersection of two postings lists
(Figure 1.6, page 11) to the one in Figure 2.12 (page 42), which handles proximity
queries. A naive algorithm for this operation could be O(PLmax

2), where P is the
sum of the lengths of the postings lists (i.e., the sum of document frequencies) and
Lmax is the maximum length of a document (in tokens).

a. Go through this algorithm carefully and explain how it works.
b. What is the complexity of this algorithm? Justify your answer carefully.
c. For certain queries and data distributions, would another algorithm be more effi-

cient? What complexity does it have?

Exercise 2.13 [!!]
Suppose we wish to use a postings intersection procedure to determine simply the
list of documents that satisfy a /k clause, rather than returning the list of positions,
as in Figure 2.12 (page 42). For simplicity, assume k ≥ 2. Let L denote the total
number of occurrences of the two terms in the document collection (i.e., the sum of
their collection frequencies). Which of the following is true? Justify your answer.

a. The merge can be accomplished in a number of steps linear in L and independent
of k, and we can ensure that each pointer moves only to the right.

b. The merge can be accomplished in a number of steps linear in L and independent
of k, but a pointer may be forced to move non-monotonically (i.e., to sometimes
back up)

c. The merge can require kL steps in some cases.

Exercise 2.14 [!!]
How could an IR system combine use of a positional index and use of stop words?
What is the potential problem, and how could it be handled?

2.5 References and further reading

Exhaustive discussion of the character-level processing of East Asian lan-EAST ASIAN
LANGUAGES guages can be found in Lunde (1998). Character bigram indexes are perhaps

the most standard approach to indexing Chinese, although some systems use
word segmentation. Due to differences in the language and writing system,
word segmentation is most usual for Japanese (Luk and Kwok 2002, Kishida

Online edition (c)�2009 Cambridge UP

46 2 The term vocabulary and postings lists

et al. 2005). The structure of a character k-gram index over unsegmented text
differs from that in Section 3.2.2 (page 54): there the k-gram dictionary points
to postings lists of entries in the regular dictionary, whereas here it points
directly to document postings lists. For further discussion of Chinese word
segmentation, see Sproat et al. (1996), Sproat and Emerson (2003), Tseng et al.
(2005), and Gao et al. (2005).

Lita et al. (2003) present a method for truecasing. Natural language pro-
cessing work on computational morphology is presented in (Sproat 1992,
Beesley and Karttunen 2003).

Language identification was perhaps first explored in cryptography; for
example, Konheim (1981) presents a character-level k-gram language identi-
fication algorithm. While other methods such as looking for particular dis-
tinctive function words and letter combinations have been used, with the
advent of widespread digital text, many people have explored the charac-
ter n-gram technique, and found it to be highly successful (Beesley 1998,
Dunning 1994, Cavnar and Trenkle 1994). Written language identification
is regarded as a fairly easy problem, while spoken language identification
remains more difficult; see Hughes et al. (2006) for a recent survey.

Experiments on and discussion of the positive and negative impact of
stemming in English can be found in the following works: Salton (1989), Har-
man (1991), Krovetz (1995), Hull (1996). Hollink et al. (2004) provide detailed
results for the effectiveness of language-specific methods on 8 European lan-
guages. In terms of percent change in mean average precision (see page 159)
over a baseline system, diacritic removal gains up to 23% (being especially
helpful for Finnish, French, and Swedish). Stemming helped markedly for
Finnish (30% improvement) and Spanish (10% improvement), but for most
languages, including English, the gain from stemming was in the range 0–
5%, and results from a lemmatizer were poorer still. Compound splitting
gained 25% for Swedish and 15% for German, but only 4% for Dutch. Rather
than language-particular methods, indexing character k-grams (as we sug-
gested for Chinese) could often give as good or better results: using within-
word character 4-grams rather than words gave gains of 37% in Finnish, 27%
in Swedish, and 20% in German, while even being slightly positive for other
languages, such as Dutch, Spanish, and English. Tomlinson (2003) presents
broadly similar results. Bar-Ilan and Gutman (2005) suggest that, at the
time of their study (2003), the major commercial web search engines suffered
from lacking decent language-particular processing; for example, a query on
www.google.fr for l’électricité did not separate off the article l’ but only matched
pages with precisely this string of article+noun.

The classic presentation of skip pointers for IR can be found in Moffat andSKIP LIST

Zobel (1996). Extended techniques are discussed in Boldi and Vigna (2005).
The main paper in the algorithms literature is Pugh (1990), which uses mul-
tilevel skip pointers to give expected O(log P) list access (the same expected

Online edition (c)�2009 Cambridge UP

2.5 References and further reading 47

efficiency as using a tree data structure) with less implementational complex-
ity. In practice, the effectiveness of using skip pointers depends on various
system parameters. Moffat and Zobel (1996) report conjunctive queries run-
ning about five times faster with the use of skip pointers, but Bahle et al.
(2002, p. 217) report that, with modern CPUs, using skip lists instead slows
down search because it expands the size of the postings list (i.e., disk I/O
dominates performance). In contrast, Strohman and Croft (2007) again show
good performance gains from skipping, in a system architecture designed to
optimize for the large memory spaces and multiple cores of recent CPUs.

Johnson et al. (2006) report that 11.7% of all queries in two 2002 web query
logs contained phrase queries, though Kammenhuber et al. (2006) report
only 3% phrase queries for a different data set. Silverstein et al. (1999) note
that many queries without explicit phrase operators are actually implicit
phrase searches.

