THE X86 ASSEMBLY LANGUAGE

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

‘/\. http://www.fitnesslab.eu/

Assembly line

[label] mnemonic [operands] [; comment]

- This 1s a comment
Jjmp labell ; This 1s also a comment
add eax, ebx

labell:
sub edx, 32
@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group

http://www.fitnesslab.eu/

Addressing

Register Addressing Mode

The operand is in a register.
mov EAX, EBX ; move EBX to EAX

Immediate Addressing Mode

The operand is part of the instruction.
mov EAX, 132 ; move 132 to EAX

Direct addressing mode
The operand is in memory, and the address is specified as an offset.
a_letter DB "c’ ; Allocate one byte of memory,
initialize 1t to "c’.

mov AL, a_letter ; Move data at memory location
a letter” 1nto AL.

- - l.e. move "c" to AL.

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Addressing

Register Indirect Addressing

The operand is found at the memory location specified by the register.
The register is enclosed in square bracket.

mov EAX, ESP ; Move stack pointer to EAX
mov EBX, [ESP] ; Move value at top-of-stack to EBX

Indirect Addressing Mode

The offset of the data is in one of the eight general-purpose registers.
-DATA
array DD 20 DUP (0) ; Array of 20 integers i1nitialized to zero

-CODE
mov ECX, OFFSET array ; Move starting address of "array” to ECX

The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Addressing

Based Addressing

One of the eight general-purpose registers acts like a base register in computing the effective address of an operand.
The address is computed by adding a signed (8-bit or 32-bit) number to the base address.

mov ECX, 20[EBP] ; ECX = memory[EBP + 20]

Indexed Addressing

The effective address is computed by:

signed displacement + (Index * scale factor)

add AX, [DI + 20] ; AX = AX + memory[DIl + 20]
mov AX, table[ESI*4]; AX = memory[OFFSET table + ESI * 4]
add AX, table[SI] ; AX = AX + memory[OFFSET table + SI * 1]

scale factor: 1,2,40r 8
index register: EAX, EBX, ECX, EDX, ESI, EDI, EBP

& The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Addressing

Based-Indexed Addressing

In this addressing mode, the effective address is computed as:

Base + (Index * Scale factor) + signed displacement.

mov EAX, [EBX+ESI] ; AX = memory[EBX + (ESI * 1) + 0]
mov EAX, [EBX+EP1*4+2] ; AX = memory[EBX + (EPP * 4) + 2]

base register: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
index register: EAX, EBX, ECX, EDX, ESI, EDI, EBP
scale factor: 1, 2,4 or 8

signed displacement: 8, 16 or 32-bit value

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

PTR Directive

» Resolves ambiguous operator size

mov [ESI], al ; Store a byte-size value In memory
; location pointed by ESI

mov [ESI], 5 ; Error: operand must have the size specified

mov [ES1], BYTE PTR 5 ; Store 8-bit value

mov ax, WORD PTR [num] ; Load a word-size value from a DWORD

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Practical example with NASM

» addressing.asm

_start:
mov eax, Oxdeadbeaf ; eax=0xdeadbeaf
mov ebx, dword [Oxdeadbeaf] ; ebx <-- (dword)[Oxffffffffdeadbeaf] ... SIGSEGV
mov eax, valore ; eax=0x6000ec -> Oxdeadbeaf
mov ebx, [valore] ; ebx=0xdeadbeaf
mov eax, ebx ; eax=0xdeadbeaf
mov eax, [ebx] ; ebx <-- (dword)[Oxffffffffdeadbeaf] ... SIGSEGV
mov eax, [ebx+2] ; ebx <-- (dword)[Oxffffffffdeadbeaf + 2] ... SIGSEGV
mov eax, [ebx*4+0xdeadbeaf] ; ebx <-- (dword)[Oxffffffffdeadbeaf*4 + Oxdeadbeaf] ...

; SIGSEGV

mov eax, [edx + ebx*4 + 42]

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Let’s check

> Install gdb (gcc)
» |Install Peda:
O Ubuntu

(

> Install NASM:

O sudo apt-get clean

O sudo apt-get remove nasm-rdoff

O sudo apt-get install nasm

If it gives you trouble, run this instead:
O sudo apt-get clean

0 sudo dpkg -r nasm-rdoff

O sudo apt-get install nasm

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

Exercise

» nasm -f elf64 -0 addr.o addressing.asm
» |d -0 addr addr.o
» gdb addr
» break start
> Si
O Hit return
> set Spc= addr

@ The Fault and Intrusion Tolerant NEtworked SystemS (FITNESS) Research Group
http://www.fitnesslab.eu/

