Esercitazione 2 di COSTRUZIONI DI STRADE, FERROVIE ED AEROPORTI

autovettura	peso complessivo P = 14,71 kN	peso aderente Pa = 50% P	Strada TIPO A extraurbana
-------------	----------------------------------	-----------------------------	---------------------------------

ESERCIZIO 1

- a) Determinare il raggio minimo della curva circolare planimetrica per cui è garantito l'equilibrio allo sbandamento dei veicoli adottando i valori di aderenza trasversale forniti dal DM 5/11/2001;
- b) Determinare la velocità di percorrenza al limite dello sbandamento dell'autovettura nell'ipotesi di un valore del coefficiente di aderenza f_a = 0,3 e di pendenza longitudinale i= 3,0%;
- c) Determinare l'accelerazione trasversale non compensata per i quesiti a) e b).

ESERCIZIO 2

Determinare il raggio minimo che consente la visibilità del ciglio interno alla distanza di accomodamento dell'occhio del conducente per un valore di V=100km/h.

ESERCIZIO 3

- a) Determinare la velocità di percorrenza dell'autovettura e la pendenza trasversale **q** di una curva di raggio **R**= **1100** secondo il DM 5/11/2001;
- b) Verificare se con il raggio assegnato è garantita la visibilità del ciglio interno. Si consideri per il calcolo del raggio che consente la visibilità del ciglio interno un valore di velocità pari a $V_{P,min.}$

ESERCIZIO 4

- a) Determinare l'aliquota di accelerazione trasversale compensata dalla pendenza trasversale su di una curva di raggio R= 400m;
- b) Determinare la forza trasversale compensata riferita ai dati del punto a).