Esercitazione 1 di COSTRUZIONI DI STRADE, FERROVIE ED AEROPORTI

ESERCIZIO 1

autovettura	peso complessivo	peso aderente Pa	potenza installata Ne
	1,2 t	70% P	60 KW
autocarro	peso complessivo	peso aderente Pa	potenza installata Ne
	15 t	65% P	170 KW

Determinare per entrambi i veicoli lo sforzo di trazione necessario all'avviamento su di un tronco stradale rettilineo che ha la pendenza longitudinale $\mathbf{i} = 5\%$ con un'accelerazione confortevole $\mathbf{a} = \mathbf{dv/dt} = 0.5 \text{ m/sec}^2$. Verificare e indicare se lo sforzo di trazione calcolato per entrambi i veicoli è effettivamente disponibile ed esplicabile.

ESERCIZIO 2

autovettura	peso complessivo	peso aderente Pa	potenza installata Ne
	1,7 t	75% P	40 KW
autocarro	peso complessivo	peso aderente Pa	potenza installata Ne
	15 t	65% P	190 KW

Determinare per entrambi i veicoli lo sforzo di trazione per mantenere una velocità costante di 95 Km/h per l'autovettura e di 45 Km/h per l'autocarro su di un tronco stradale rettilineo che ha la pendenza **i**= 4,5%. Verificare e indicare se lo sforzo di trazione calcolato per entrambi i veicoli è effettivamente disponibile ed esplicabile.

ESERCIZIO 3

autovettura	peso complessivo 2,1 t	peso aderente Pa 75% P	potenza installata Ne 60 KW
autocarro	peso complessivo	peso aderente Pa	potenza installata Ne
	13 t	60% P	150 KW

Determinare la massima accelerazione con cui possono avviarsi entrambi i veicoli su di un tronco stradale rettilineo che ha la pendenza \mathbf{i} = 4,5% su di una pavimentazione asciutta (f_a = 0,85) e su di una pavimentazione bagnata.

ESERCIZIO 4

autovettura	peso complessivo	peso aderente Pa	potenza installata Ne
	2,2 t	80% P	60 KW
autocarro	peso complessivo	peso aderente Pa	potenza installata Ne
	13 t	60% P	150 KW

Determinare per entrambi i veicoli la massima pendenza possibile di una strada tale che sia garantito l'avviamento in salita in condizioni di pavimentazione asciutta (f_a = 0,85).

ESERCIZIO 5

Determinare le distanze di visibilità per l'arresto, il cambio di corsia, il sorpasso su di una strada ad unica carreggiata con pendenza $\mathbf{i}=4,5\%$ nell'ipotesi che essa sia percorsa da una autovettura ad una velocità $\mathbf{V}=95$ Km/h e da un autocarro ad una velocità $\mathbf{V}=55$ Km/h.