Prof. Mariacarla Staffa |
a.a. 2022/2023 -

=

Laboratoriodi-
Architettura Degli E

e \
.
[]
.
s
\
\

PROGRAMMING BUILDING
I BLOCKS

Programming Building Blocks

e Data-processing Instructions
e Conditional Execution
e Branches

e High-level Constructs:
= if/else statements
= forloops
= while loops
= arrays
= function calls

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <3>

Conditional Execution

Don’t always want to execute code
sequentially

e For example:

= if/else statements, while loops, etc.:
only want to execute code if a

condition is true

= branching: jump to another portion of
code if a condition is true

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <4>

Conditional Execution

Don’t always want to execute code sequentially
* For example:

= if/else statements, while loops, etc.: only want to
execute code if a condition is true

= branching: jump to another portion of code if a
condition is true

e ARM includes condition flags that can be:
= set by an instruction
» used to conditionally execute an instruction

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <5>

ARM Condition Flags

Flag Name Description

N Negative |Instruction result is negative

Z Zero nstruction results in zero

C Carry nstruction causes an unsigned
carry out

V oVerflow | Instruction causes an overflow

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <6>

ARM Condition Flags

N Negative |Instruction result is negative

Z Zero nstruction results in zero

C Carry nstruction causes an unsigned
carry out

V oVerflow |Instruction causes an overflow

e Set by ALU (see Chapter 5)
e Held in Current Program Status Register (CPSR)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <7>

Review: ARM ALU

ALUControk, Sumg, ALUControl,
11PN

Cout

Yonuonnv

N AN N

N
11 10 01 00
\ /L?—ALUControl
Resulty; N
NZCV
F4
v C N

V4 Result ALUFlags

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <8>

| 2 Y SAVA § 23 23

Setting the Condition Flags: NZCV

e Method 1: Compare instruction: CMP
Example: CMP R5, R6
= Performs: R5-R6
» Does not save result
= Sets flags

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <9>

Setting the Condition Flags: NZCV

e Method 1: Compare instruction: CMP

Example: CMP R5, R6
= Performs: R5-R6

= Does not save result
= Sets flags. If result:

s O, Z=1
ls negative, N=1
Causes a carry out, C=1

Causes a signed overtlow,

Setting the Condition Flags: NZCV

e Method 1: Compare instruction: CMP
Example: CMP R5, R6
= Performs: R5-R6
= Setsflags: If resultis 0 (Z=1), negative (N=1), etc.
= Does not save result

e Method 2: Append instruction mnemonic with S

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <11>

Setting the Condition Flags: NZCV

e Method 1: Compare instruction: CMP
Example: CMP R5, R6
= Performs: R5-R6
= Setsflags: If resultis 0 (Z=1), negative (N=1), etc.
* Does not save result
e Method 2: Append instruction mnemonic with S
Example: ADDS R1, R2, R3
= Performs: R2 + R3
= Setsflags: If resultis 0 (Z=1), negative (N=1), etc.
» Saves resultin R1

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <12>

Condition Mnemonics

* |nstruction may be conditionally executed based
on the condition flags

e Condition of execution is encoded as a condition
mnemonic appended to the instruction

mnemonic

Example: CMP R1, R2
SUBNE R3, R5, RS

= NE: condition mnemonic
= SUB will only execute it R1 # R2

(i.,e., Z=0)

Chapter 6 <13>

Digital Design and Computer Architecture: ARM® Edition © 2015

I Condition

Mnemonics

cond Mnemonic Name CondEx
0000 |EQ Equal Z
0001 | NE Not equal A
0010 | CS/HS Carry set / Unsigned higher or C
same
0011 | CC/LO Carry clear / Unsigned lower C
0100 | Ml Minus / Negative N
0101 | PL Plus / Positive of zero N
0110 | VS Overflow / Overflow set |4
0111 | VC No overflow / Overflow clear 4
1000 | HI Unsigned higher ZC
1001 | LS Unsigned lower or same ZORC
1010 | GE Signed greater than or equal NPV
1011 | LT Signed less than NV
1100 | GT Signed greater than Z(N V)
1101 | LE Signed less than or equal ZOR(NDYV)
1110 | AL(or none) Always / unconditional ignored

Conditional Execution

Example:
CMP R5, R9 ; performs R5-R9
; sets condition flags
SUBEQ R1, R2, R3 ; executes if R5==R9 (z=1)
ORRMI R4, RO, RO ; executes 1f R5-R9 1is

; negative (N=1)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <15>

Conditional Execution

Example:
CMP R5, R9 ; performs R5-R9
; sets condition flags
SUBEQ R1, R2, R3 ; executes if R5==R9 (z=1)
ORRMI R4, RO, R9 ; executes 1f R5-R9 1is

; negative (N=1)

Suppose R5 =17, R9 = 23:
CMP performs: 17 - 23 = -6 (Sets flags: N=1, Z=0, C=0, V=0)
SUBEQ doesn’t execute (they aren't equal: Z=0)
ORRMI executes because the result was negative (N=1)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <16>

Programming Building Blocks

e Data-processing Instructions
e Conditional Execution
e Branches

e High-level Constructs:
= if/else statements
= forloops
= while loops
= arrays
= function calls

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <17>

Branching

* Branches enable out of sequence instruction execution

 Types of branches:
* Branch (B)

 branches to another instruction

 Branch and link (BL)

e discussed later

e Both can be conditional or unconditional

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <18>

The Stored Program

Assembly code Machine code
MOV R1, #100 O0xE3A01064
MOV R2, #69 O0xE3A02045
CMP R1, R2 OxE1510002

STRHS R3, [R1l, #0x24] 0x25813024

Stored program
/Address Instructions)

0000800C 25813024
00008008 |E15 100 02
00008004 |E3 A020 45
00008000 |E3 AO010 64|«—PC

_ J

Main memory

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <19>

Unconditional Branching (B)

ARM assembly
MOV R2, #17 ; R2 = 17
B TARGET ; branch to target

ORR R1, R1, #0x4 ,; not executed

TARGET
SUB R1, R1, #78 ; Rl = R1 - 78

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <20>

Unconditional Branching (B)

ARM assembly
MOV R2, #17 ; R2 = 17
B TARGET ; branch to target

ORR R1, R1, #0x4 ,; not executed

TARGET
SUB R1, R1, #78 ; R1 = R1 + 78

Labels (like TARGET) indicate instruction location.
Labels cant be reserved words (like ADD, ORR, etc.)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <21>

The Branch Not Taken

ARM Assembly
MOV RO, #4 ; RO = 4
ADD R1l, RO, RO ; R1 = RO+RO = 8
CMP RO, RI1 ; sets flags with RO-R1
BEQ THERE ; branch not taken (Z=0)
ORR R1, R1, #1 ; Rl = R1 OR Rl = 9
THERE

ADD R1, R1, #78 ; RI1 = Rl + 78 = 87

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <22>

Programming Building Blocks

e Data-processing Instructions
e Conditional Execution
e Branches

e High-level Constructs:
= if/else statements
= forloops
= while loops
= arrays
= function calls

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <23>

if Statement

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <24>

| 2 Y SAVA § 23 23

if Statement

CCode ARM Assembly Code

;RO=f, Rl=g, R2=h, R3=i, R4=]

1if (1 == 73) CMP R3, R4 ; set flags with R3-R4
f =g + h; BNE L1 ; 1f 1!=7, skip 1f block
ADD RO, Rl, R2 ; f =g + h

L1
f =f - 1i; SUB RO, RO, R3 ,; £ = f - 1
Nota: il codice assembly effettua il test opposto (i != 7)
rispetto a quello di alto livello (1 == 7)

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <25>

Istruzioni condizionali

C Code ARM Assembly Code

;RO=f, Rl=g, R2=h, R3=i, R4=]

if (1 == 7) CMP R3, R4 ; set flags with R3-R4
f = g + h; ADDEQ RO, R1, R2 ; if (i==3) £ = g + h
f =f - 1i; SUB RO, RO, R3 ,; £ =f - 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <26>

It Statement: Alternate Code

Codice alternativo per piccoli blocchi di codice:

Original Alternate Assembly Code
;RO=f, Rl=g, R2=h, R3=1i, R4=j
CMP R3, R4 CMP R3, R4 ; set flags with R3-R4
BNE L1 ADDEQ RO, R1, R2 ; if (i==3) f = g + h
ADD RO, R1, R2 SUB RO, RO, R2 ; f=°f - 1i
L1

SUB RO, RO, R2

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <27>

It Statement: Alternate Code

Original Alternate Assembly Code

;RO=f, Rl=g, R2=h, R3=i, R4=j

CMP R3, R4 CMP R3, R4 ; set flags with R3-R4
BNE L1 ADDEQ RO, R1, R2 ; if (i==3) £ = g + h
ADD RO, R1, R2 SUB RO, RO, R2 ,;, £ =£f - 1

Ll

SUB RO, RO, R2

Useful for short conditional blocks of code

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <28>

if/else Statement

CCode ARM Assembly Code

if (1 == 7J)
f =g + h;
else
f =1f - 1;

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <29>

| 2 Y SAVA § 23 23

if/else Statement

C Code ARM Assembly Code

;RO=f, Rl=g, R2=h, R3=1i, R4=]

if (1 == 7j) R3, R4 ; set flags with R3-R4
f = g + h; L1 ; 1f 1!'=3, skip if block
RO, R1, R2 ; £ =g + h
L2 ; branch past else block
else L1 RO, RO, R3 ,; £ =f - 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <30>

if/else Statement: Alternate Code

CCode ARM Assembly Code

;RO=f, Rl=g, R2=h, R3=i, R4=j

if (1 == 73) CMP R3, R4 ; set flags with R3-R4
f =g + h; ADDEQ RO, R1, R2 ; if (i==3) f = g + h
else
f =f - 1; SUBNE RO, RO, R3 ; else £ = £f - 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <31>

if/else Statement: Alternate Code

Codice alternativo per piccoli blocchi di codice:

Original Alternate Assembly Code

;RO=f, Rl=g, R2=h, R3=i, R4=j

CMP R3, R4 CMP R3, R4 ; set flags with R3-R4
BNE L1 ADDEQ RO, R1, R2 ; if (i==j) f =g + h
ADD RO, R1, R2
B L2 SUBNE RO, RO, R2 ; else f = f - i
L1l
SUB RO, RO, R2
L2

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <32>

while Loops

C Code ARM Assembly Code

// determines the power
// of x such that 2* = 128

int pow = 1; MOV RO, #1
int x =05 MOV R1, #0
L2 CMP RO, #128
while (pow != 128) { BEQ L1
MUL RO, RO, #2
ADD R1, R1, #1

pow = pow * 2;
BL2

Xx =x + 1;

L1

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <33>

while Loops
C Code ARM Assembly Code

// determines the power ; RO = pow, Rl = x
// of x such that 2* = 128 MOV RO, #1 ; pow = 1
int pow = 1; MOV R1, #0 ;B S0
int X = 0;
WHILE
CMP RO, #128 ; RO-128
while (pow != 128) { BEQ DONE ; 1f (pow==128)
; exit loop
pow = pow * 2; LSL RO, RO, #1 ; POW=pOwW*2
x = x + 1; ADD R1, R1, #1 ; x=x+1
} B WHILE ; repeat loop
DONE
Il codice assembly verifica la condizione opposta (pow == 128)

a quella del C(pow !'= 128).

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <34>

for Loops

for (initialization; condition; loop operation)
statement

initialization: eseguita prima che il loop inizi

condition: condizione di continuazione che é verificata
all'inizio di ogni iterazione

loop operation: eseguita alla fine di ogni iterazione

statement: eseguito ad ogni iterazione, ovvero
fintantoché la condizione di continuazione & verificata

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <35>

for Loops

C Code ARM Assembly Code

// adds numbers from 1-9
int sum = 0

for (i=1; 1!=10; i=i+1)
sum = sum + 1i;

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <36>

| 2 Y SAVA § 23 23

for Loops

C Code ARM Assembly Code

// adds numbers from 1-9 ; , R1 = sum
int sum = 0 MOV RO, #1 ;1 =1
MOV R1, #0 ; sum = 0
for (i=1; 1!=10; i=i+1) FOR
sum = sum + 1i; CMP RO, #10 ; RO-10
BEQ DONE ; 1f (1==10)
; exit loop
ADD R1, R1, RO ; sum=sum + 1
ADD RO, RO, #1 ;1= 1+ 1
B FOR ; repeat loop
DONE

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <37>

for Loops: Decremented Loops

In ARM, i loop decrescenti fino a 0 sono piu efficienti

C Code ARM Assembly Code

// adds numbers from 1-9 ; RO = i, Rl = sum

int sum = 0 MOV RO, #9 ;1 =09
MOV R1, #0 ; sum = 0

for (i=9; i!=0; 1i=i-1) FOR

sum = sum + 1i; ADD R1, R1, RO ; sum=sum + 1
SUBS RO, RO, #1 Al = dee1
; and set flags

BNE FOR ; 1f (1!=0)

; repeat loop

Sirisparmiano 2 istruzioni per ogni iterazione:
= Siaccorpano decremento e comparazione: SUBS R0, RO, #1

= Solo un branch invece di due

Digital Design and Computer Architecture: ARM® Edition © 2015 Chapter 6 <38>

