

Ricapitolando...

Funzioni Booleane

- Ciascuna variabile booleana può assumere uno dei due stati '1' o '0'.
 Due variabili prese insieme possono individuare 22 = 4 stati. La variabile A può essere presente come A o !A. Una seconda variabile B può anch'essa essere presente come B o !B . Queste due variabili prese insieme possono dare luogo a
- quattro combinazioni: AB, A!B, !AB, !A!B. Assegnando 1 alla variabile vera e 0 alla variabile complementata possiamo riscrivere i quattro stati come 11,10,01,00.
- Tre variabili possono essere scritte in 23differenti combinazioni, dando luogo a 23 stati;
- *n* variabili danno luogo a 2*n* stati.

Tabella delle Combinazioni

- La tabella delle combinazioni è un'elencazione sistematica di tutte le combinazioni che un gruppo di variabili binarie può assumere, ordinate secondo la sequenza numerica binaria.
- Date tre variabili A, B, C, sono
- possibili 23 = 8 differenti combinazioni di queste variabili prese insieme.
- Di seguito è mostrata la tabella delle combinazioni delle tre variabili A, B, C

```
A B C Comb

0 0 0 !A !B !C

0 0 1 !A !B C

0 1 0 !A B !C

0 1 1 !A B C

1 0 0 A !B !C

1 0 1 A !B C

1 1 0 A B !C

1 1 1 ABC
```

Tabella delle Combinazioni

- Una funzione booleana viene univocamente definita dalla sua tabella della verità. La tabella della verità è un'estensione della tabella delle combinazioni: a questa viene aggiunta sulla destra una colonna nella quale è indicato lo stato che la funzione assume in corrispondenza di ogni combinazione delle variabili, per tutte le combinazioni.
- Di seguito è mostrata la tabella della verità di una funzione f di tre variabili:

```
ABC f
000 0
001 1
010 0
011 1
100 0
101 1
110 1
111 0
```

E' immediato scrivere l'espressione booleana della funzione f partendo dalla tabella della verità. La funzione è data dalla OR delle combinazioni (somma canonica) per le quali f = 1:

$$f = !A !B C + !A B C + A !B C + A B !C.$$

Funzioni Booleane

Il metodo appena illustrato mostra come si giunge alla sintesi delle funzioni booleane. L'espressione appena scritta è l'espressione primitiva della funzione f. Applicando i teoremi dell'algebra booleana è possibile scrivere l'espressione più semplice della funzione f.

I mintermini di una funzione vengono spesso identificati con il numero in base 10 corrispondente al valore binario del mintermine. (Es., a!b!c = m_4) e la funzione indicata come somma dei mintermini $f=\Sigma$ m_1

Mappe di Karnaugh

Una più eloquente ed utile rappresentazione di una funzione booleana è data dalla mappa di Karnaugh.

Tutte le possibili combinazioni che un Gruppo di variabili può assumere sono rappresentate in forma di matrice nella mappa.

Mappe di Karnaugh

- La mappa di Karnaugh può essere usata per definire una funzione.
- In ogni cella corrispondente alla combinazione delle variabili per cui la funzione è vera si pone '1'; dove la funzione è falsa si pone '0'.
- Essa da una definizione del tutto equivalente a quella data dalla tabella della verità.

Minimizzazione di funzioni booleane

• Si può effettuare la minimizzazione delle funzioni booleane mediante manipolazioni algebriche, utilizzando i teoremi dell'algebra di Boole, oppure mediante l'elaborazione delle mappe di Karnaugh.

Minimizzazione delle funzioni booleane

- La mappa di Karnaugh è una disposizione ordinata di celle, che contengono le combinazioni delle variabili in modo che nel passare da una cella ad una contigua cambi lo stato di una sola variabile.
- La mappa contiene una cella per ogni combinazione delle variabili, in modo da esaurire tutte le combinazioni possibili.
- Una mappa di 2 variabili deve contenere 4 celle, perché vi sono 22 combinazioni differenti delle due variabili. Una mappa di tre variabili deve contenere 23 celle; una mappa di *n* variabili deve contenere 2*n* celle.
- Raffiguriamo la mappa di Karnaugh di tre variabili.

Minimizzazione delle funzioni booleane

		AB			
		00	01	11	10
C	0				
0	1				

Minimizzazione delle funzioni booleane

- Raffiguriamo il diagramma della mappa di Karnaugh per quattro variabili.
- Le variabili sono identificate sopra e a lato del diagramma.
- Le combinazioni delle variabili A e B, sopra in orizzontale, e delle variabili C e D, lateralmente in verticale, sono disposte secondo il codice di Gray di due variabili.

Minimizzazione delle funzioni booleane

			AB			
_		-00	01	11	10	
CD	00					
	01					
	11					
	10					

Minimizzazione delle funzioni booleane

- Consideriamo ora la struttura delle mappe di quattro variabili.
 Avendo ordinato le combinazioni, contenute nelle celle, secondo il codice di Gray, che è ciclico, i due bordi superiore ed inferiore della tabella risultano adiacenti e una sola variabile cambia stato nell'attraversamento del bordo. Pertanto a questo punto possiamo considerare la mappa come cilindrica, con i due bordi superiore ed inferiore coincidenti.
- Una considerazione analoga vale per i bordi destro e sinistro: anch'essi sono coincidenti. Ecco allora che la mappa di Karnaugh, che disegnamo in forma di matrice piana, è in realtà in forma di una superficie toroidale, senza bordi. Di conseguenza, qualsiasi cella ha una cella contigua su ognuno dei suoi quattro lati.

- Si parte scrivendo la tabella della verità della funzione. Da essa si ricava quali sono le combinazioni vere e si pone un '1' nelle celle della mappa corrispondenti alle combinazioni vere. Ogni '1' collocato nella mappa corrisponde ad una combinazione presente nella somma canonica, espressione della funzione.
- Per come è stata costruita la mappa, a due '1' collocati in celle contigue corrispondono combinazioni che differiscono soltanto in una variabile: le rispettive combinazioni nella somma canonica si sommano secondo il teorema (in forma generalizzata)

$$term*Y + term*!Y = term*(Y + !Y) = term.$$

 La semplificazione delle funzioni avviene attraverso l'applicazione ripetuta del suddetto teorema. Inoltre le ridondanze sono automaticamente eliminate.

- Elenchiamo qui di seguito le regole da seguire per individuare i gruppi di celle rilevanti per costruire l'espressione semplificata di una funzione.
 - i gruppi possono contenere 1, 2, 4, 8 o in generale 2n celle
 - i gruppi non possono includere celle contenenti uno '0'
 - i gruppi possono essere orizzontali o verticali, ma non diagonali: i gruppi sono quindi in forma di rettangoli o di quadrati
 - ogni gruppo deve essere il più largo possibile, cioè deve contenere quanti più '1' possibile
 - ogni cella contenente un '1' deve appartenere ad almeno un gruppo
 - i gruppi si possono sovrapporre
 - le celle che si trovano sui bordi possono venir raggruppate con quelle corrispondenti dal lato opposto (ricordiamoci del "toroide")
 - i gruppi devono essere nel minor numero possibile senza contraddire alcuna delle regole elencate precedentemente.

		AB			
		00	01	11	10
	00				
CD	01	1	1		
	11	1	1		
	10				
			Ā	D	

		AB			
	-00	01	11	10	
00		1	1		
CD $\stackrel{01}{=}$					
11					
10		1	1		
		В	D		

		AB			
		-00	01	11	10
~	00				
	01	1			1
C	7D	1)			1
	10				
-			Ē	D	

		AB				
		00	01	11	10	
	00	1			1	
C F	01					
CD	11					
	10	1			1	
		_	Ē	\bar{D}		

			A	B	
_		00	01	11	10
CD	00				
	01	1	1	1	1)
<u>U</u> .	11				
	10				
			Ō	D	

		AB			
		-00	01	11	10
	00		1		
CD	01		1		
CD	11		1		
	10		1		

			AB			
_		-00	-01	11	10	
CL	00			1	1	
	01			1	1	
	11			1	1	
	10			1	1	

		AB			
		-00	01	11	10
	00				
CD	01				
CD	11	1	1	1	1
	10	1	1	1	1

		AB			
		-00	01	11	10
	00	1			1
CL	01	1			1
OL.	11	1			1
	10	1			1
				R	

		AB			
		00	01	11	10
	00	1	1	1	1
CD	01				
CD	11				
	10	1	1	1	1

- Può accadere che nella tabella della verità di una funzione compaiano condizioni in cui per una qualche combinazione il valore della funzione può essere indifferentemente '1' o '0'. Questa condizione viene indicata nella tabella con il simbolo Φ. Tale simbolo appare anche nella mappa di Karnaugh.
- Può accadere inoltre che certe combinazioni non si verifichino mai (ad es., quando usiamo il codice BCD sei delle sedici combinazioni non si verificano mai): queste combinazioni sono dette ridondanze.
- Nella tabella della verità in corrispondenza della ridondanza viene posto il simbolo X. Tale simbolo appare anche nella mappa di Karnaugh.

- Sia la condizione di indifferenza sia la ridondanza sono utili nella minimizzazione delle espressioni delle funzioni. Basta scegliere uguali a '1' le condizioni di indifferenza che consentono una semplificazione.
- Le ridondanze non si verificano mai, quindi possiamo attribuire loro, dove è utile, il valore fittizio '1' unicamente per consentire la semplificazione.

• La tabella della verità seguente illustra le considerazioni fatte.

```
ABCf_1f_2
000 0
001 \ 1 \ \Phi
010 \quad \mathcal{O} \quad 0
100 \ 0 \ \Phi
101 0
110 X X
```

• Disegniamo le mappe di Karnaugh per f_1 e f_2 e ricaviamo le funzioni semplificate.

	AB			
	00	01	11	10
0 C		φ	×	
1	1	(\phi)	×	
	f_1			

		AB			
	00	01	11	10	
C-	ϕ		×	φ	
1	ϕ	1	×	ϕ	
	f_2				

• Scrivere le forme canoniche con e senza indifferenze e ridondanze

• Risultano:

$$f_1 = !A C; f_2 = C.$$

• Non considerando le condizioni di indifferenza e le ridondanze si avrebbe:

$$f_1 = !A !BC; f_2 = !ABC.$$

Logica Combinatoria

- una rete combinatoria è un circuito logico avente n ingressi (x₁,x₂,...,x_n) ed m uscite (y₁,y₂, ...,y_m), ciascuno dei quali assume valori binari (0/1), tale che a ciascuna combinazione degli ingressi corrisponde un unica combinazione delle uscite.
- da un punto di vista logico, ogni uscita può essere definita come una funzione booleana degli ingressi $y_i = y_i(x_1,x_2,...,x_n)$.
- ad ogni istante, il valore delle uscite dipende unicamente dal valore assunto dagli ingressi nello stesso istante.

Logica Combinatoria

- La procedura per progettare una rete logica combinatoria passa attraverso i seguenti stadi:
- 1: definizione completa e univoca del problema da risolvere
- 2: analisi del problema, con individuazione delle variabili d'ingresso e delle funzioni di uscita
- 3: scrittura della tabella della verità di ogni funzione
- 4: sintesi delle funzioni e loro semplificazione con le mappe di Karnaugh
- 5: disegno della schema logico della rete.

Tabelle delle verità

- Una funzione booleana può essere descritta per mezzo di una tabella delle verità che assegna ad ogni combinazione dei valori di input i corrispondenti valori agli output.
- Per ogni funzione esiste un'unica tabella delle verità che la rappresenta e viceversa.
- Tuttavia per ogni funzione esistono infinite espressioni per rappresentarla.

 Data la seguente funzione booleana avente 4 ingressi ed una uscita:

```
- On-set = [1,4,9,12,13,15]
```

$$-$$
 Dc-set = $[0,3,10,11]$

 Utilizzando il metodo delle mappe di Karnaugh sintetizzarla in forma minima come somma di prodotti.

Α	В	С	D	
0	0	0	0	Χ
0	0	0	1	1
0	0	1	0	0
0	0	1	1	X
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	Χ
1	0	1	1	Χ
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

On-set = [1,4,9,12,13,15] Dc-set = [0,3,10,11]

AB

		00	01	11	10
	00	X	1	1	
- D	01	1		1	1
D	11	X		1	X
-	10				X

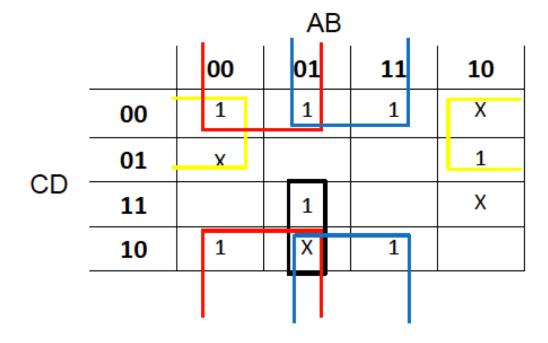
$$f = B!C!D + !BD + AD$$

 Data la seguente funzione booleana avente 4 ingressi ed una uscita:

```
- On-set = [0,2,4,7,9,12,14]
```

- Dc-set = [1,6,8,11]
- Utilizzando il metodo delle mappe di Karnaugh sintetizzarla in forma minima come somma di prodotti.

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	Χ
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	Χ
1	0	0	1	1
1	0	1	0	0
1	0	1	1	Χ
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0



$$f = !A * B * C + B * !D + !A * !D + !B * !C$$

 Data la seguente funzione booleana avente 4 ingressi ed una uscita:

```
- On-set = [7,8,9,10,11,14,15]
```

$$-$$
 Dc-set = [1,3,5]

 Utilizzando il metodo delle mappe di Karnaugh sintetizzarla in forma minima come somma di prodotti.

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	Χ
0	0	1	0	0
0	0	1	1	Χ
0	1	0	0	0
0	1	0	1	Χ
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

CD

Esercizio 1

AB

	00	01	11	10	
00				1	
01	X	Х		1	
11	Х	1	1	1	
10			1	1	

$$f = C * D + A * ! B + A * C$$

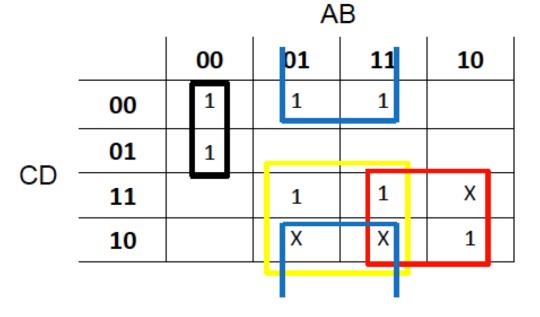
 Data la seguente funzione booleana avente 4 ingressi ed una uscita:

```
- On-set = [0,1,4,7,10,12,15]
```

$$-$$
 Dc-set = $[6,11,14]$

 Utilizzando il metodo delle mappe di Karnaugh sintetizzarla in forma minima come somma di prodotti.

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	Χ
1	1	0	0	1
1	1	0	1	0
1	1	1	0	Χ
1	1	1	1	1



$$f = !A * !B * !C + B * !D + B * C + A * C$$

...ricapitolando

Mappe di Karnaugh

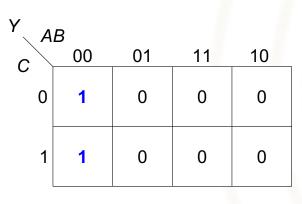
- Le mappe di Karnaugh sono un metodo per semplificare espressioni booleane in forma SOP
- In realtà non introducono tecniche di semplificazione nuove, sono semplicemente un espediente grafico che consente di rilevare più facilmente implicati che possono essere semplificati
- Quindi alla base delle mappe di Karnaugh c'è il solito principio:

$$PA + P\overline{A} = P$$

Karnaugh Maps (K-Maps)

- Le espressioni booleane sono minimizzate combinando i termini
- Le K-map minimizzano graficamente le equazioni
- $PA + P\overline{A} = P$
- $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C = \overline{A}\overline{B}$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

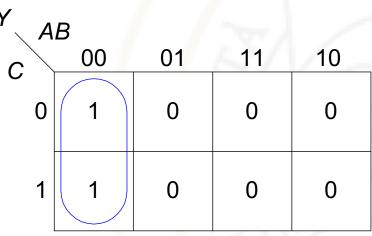


YA	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

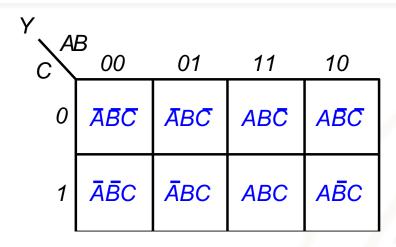
K-map

- Il cerchio 1 è nelle caselle adiacenti
- Nell'espressione booleana, includere solo i valori letterali la cui forma true e complemento non sono nel cerchio

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0



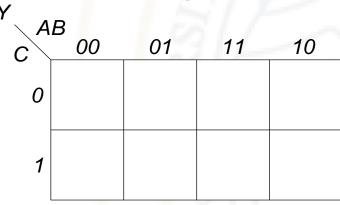
$$Y = AB$$



Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map



K-Map Definitions

Complement: variable with a bar over it

$$\bar{A}, \bar{B}, \bar{C}$$

• Literal: variable or its complement

$$\bar{A}$$
, A , \bar{B} , B , C , \bar{C}

• Implicant: product of literals

• **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

Every 1 must be circled at least once

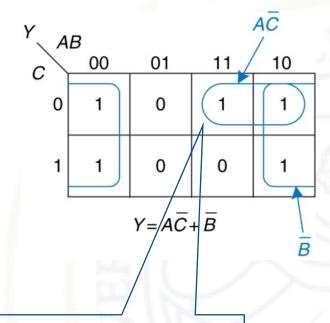
Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction

Each circle must be as large as possible

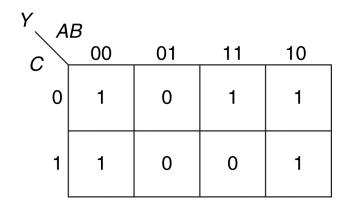
A circle may wrap around the edges

A "don't care" (X) is circled only if it helps minimize the equation

Y AB					
c	00	01	11	10	
0	1	0	1	1	
1	1	0	0	1	



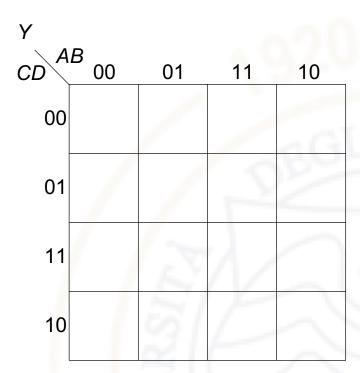
$$AB\bar{C} + A\bar{B}\bar{C} = A\bar{C}(B + \bar{B}) = A\bar{C}$$



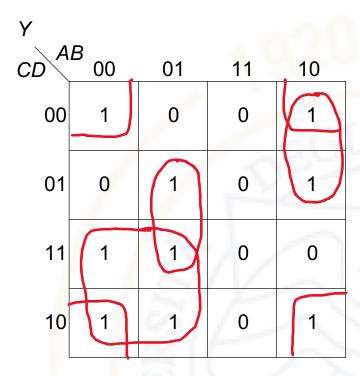
Y A	R			AC
c	00	01	11 /	10
0	1	0	1	1
1	1	0	0	1
		$Y = A\overline{C}$	+ B	$\frac{1}{B}$

$$\bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + A\bar{B}\bar{C} + A\bar{B}C = \bar{A}\bar{B}(\bar{C} + C) + A\bar{B}(\bar{C} + C) = \bar{A}\bar{B} + A\bar{B} = (\bar{A} + A)\bar{B} = \bar{B}$$

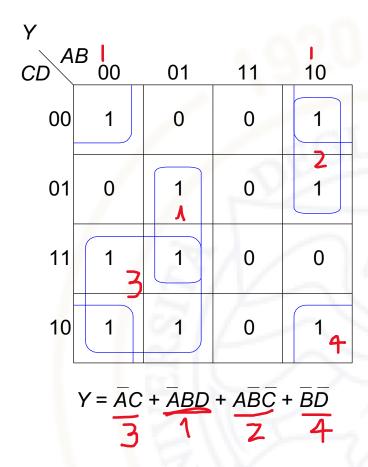
Α	В	С	D	Y
0			0	1
0	0	0 0	1	0
0	0	1	0	1
0	0	1 1 0 0	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1 1 0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1 1 0	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0 1 1 1 1	1 1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 1 1 1 0 0 0 0
1	1	1	1	0



_ <i>A</i>	В	С	D	Y
0	0		0	1
0	0	0		0
0	0	1	0	1
0 0 0 0 0 0 1 1 1	0	1	1 0 1 0	1
0	1	0	0	0
0	1	0	1	1
0	1	1	1 0	1
0	1 1 0 0	1	1 0 1 0	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	0 1	0	1 0	0
1	1	0	1 0	0
1 1 1	1 1	0 0 1 0 0 1 0 0 1 1 0 0 1	0	1 0 1 0 1 1 1 1 0 0 0
1	1	1	1	0



Α	В	С	D	Y
0	0		0	1
0	0	0		0
0	0	1	1	1
0 0 0 0 0 0 1 1 1 1	0	1	1	1
0	1	0	1	0
0	1	0	1	1
0	1	1	1 0	1
0	1 1 1 0 0	1	1	1
1	0	0	1 0 1 0	1
1	0	0	1	1
1	0	1	0	1
1	0 1	1		0
1	1	0	1 0	0
1	1	0	1 0	0
1 1 1	1 1	0 0 1 0 0 1 0 0 1 1 0 0 1	0	1 0 1 0 1 1 1 1 0 0 0
1	1	1	1	0



Esercizio

- Per frequentare un certo corso di elettronica uno studente deve soddisfare le seguenti condizioni:
 - 1. aver superato almeno 20 esami ed essere uno studente di ingegneria in corso, oppure
 - 2. aver superato almeno 20 esami **ed** essere uno studente di ingegneria con il piano di studio approvato, **oppure**
 - 3. aver superato meno di 20 esami **ed** essere uno studente di ingegneria fuori corso, **oppure**
 - 4. essere in corso ed avere il piano di studio approvato, oppure
 - 5. essere uno studente di ingegneria **ed** avere il piano di studi non ancora approvato.
- Ricavare la funzione logica che minimizza le condizioni precedenti.

Esercizio (definizione variabili)

- Introduciamo le variabili logiche A, B, C, D, Z e definiamole nel seguente modo:
 - A= lo studente ha superato almeno 20 esami
 - B= lo studente è studente di ingegneria
 - C= lo studente è in corso
 - D= lo studente ha il piano di studi approvato
 - Z= lo studente può frequentare il corso

Esercizio (tabella della verità)

Α	В	С	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- 1. aver superato almeno 20 esami ed essere uno studente di ingegneria in corso, oppure
- 2. aver superato almeno 20 esami ed essere uno studente di ingegneria con il piano di studio approvato, oppure
- 3. aver superato meno di 20 esami ed essere uno studente di ingegneria fuori corso, oppure
- 4. essere in corso ed avere il piano di studio approvato, oppure
- 5. essere uno studente di ingegneria con il piano di studi non ancora approvato.

A= lo studente ha superato almeno 20 esami

B= lo studente è studente di ingegneria

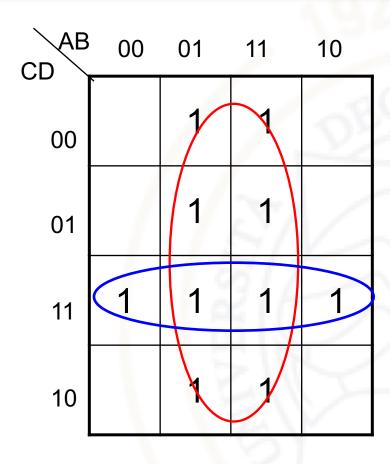
C= lo studente è in corso

D= lo studente ha il piano di studi approvato

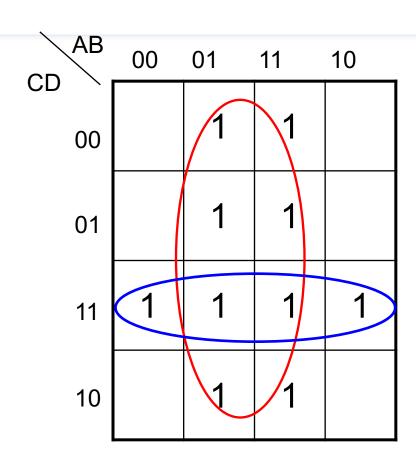
Z= lo studente può frequentare il corso

C D 0

Esercizio (mappa di Karnaugh))



Esercizio (mappa di Karnaugh))



$$Z = B + CD$$

Esercizio (realizzazione)

