

Rappresentazione dell'informazione

- Informazione: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere
 - Consente di ridurre l'incertezza

 Dato: elementi di informazione costituiti da simboli che debbono essere elaborati

Consideriamo un mazzo di carte

- E peschiamo una carta a caso senza guardarla
 - La carta potrebbe essere una qualsiasi delle 56 a disposizione
- Se vediamo che è una carta di cuori
 - Le possibilità si riducono a 13
- La carta è un asso di cuori

Rappresentazione dell'informazione

- In generale ogni rappresentazione è una funzione che associa ad ogni elemento una sequenza di simboli
- Per ogni rappresentazione, oggetti (numeri) distinti devono avere differenti rappresentazioni e la rappresentazione di ogni oggetto deve essere unica e non ambigua
 - pesca
- Le rappresentazioni usate sui calcolatori impiegano tutte sequenze finite di simboli, tali quindi da rappresentare insiemi finiti di naturali

The Digital Abstraction

Most physical variables are continuous

Voltage on a wire

Frequency of an oscillation

Position of a mass

Digital abstraction considers **discrete**subset of values

Alfabeti, parole, linguaggi

- Per alfabeto A intenderemo un insieme finito e distinguibile di segni che chiameremo a seconda del contesto cifre, lettere, caratteri, simboli etc.
 - Le nove cifre dell'alfabeto decimale A={'0',...,'9'}
 - Le ventisei lettere (minuscole) dell'alfabeto A={'a',...,'z'}
 - I quattro simboli delle carte francesi A={♥, ♦,♣,♠}
- Una parola (o stringa) su A è una sequenza finita di simboli dell'alfabeto A
 - "18945" (A={'0',...,'9'})
 - "pkwocod" (A={'a',...,'z'})
 - "♥, ♦, ♣" (A={♥, ♦, ♣, ♠})
- Con A* indicheremo tutte le possibili parole generabili a partire dall'alfabeto

Alfabeti, parole, linguaggi

Un linguaggio L sull'alfabeto A è un qualsiasi sottoinsieme di A*.

Parole italiane

- "pwfnfkr"
- "dog"
- "siengs"
- "casa"
- "door"
- "porta"

Parole inglesi

- "pwfnfkr"
- "dog"
- "siengs"
- "casa"
- "door"
- "porta"

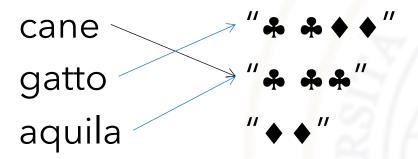
- · Le parole di un linguaggio non sono altro che sequenze di simboli che non hanno alcun senso finché non forniamo un modo per interpretarle
 - "* * ***** * * "?
- · Associare gli elementi di un insieme D alle parole di un linguaggio L viene detta codifica o rappresentazione di D.
- · Ad esempio sia D l'insieme dei concetti cane, gatto e aquila (notate bene che sto parlando dei concetti non delle parole "cane", "gatto" e "aquila"). Allora nella usuale codifica della lingua inglese

Cane \rightarrow "dog" Gatto \rightarrow "cat"

Aquila → "eagle"

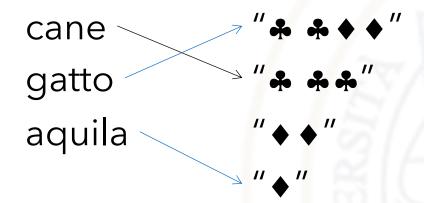
- Formalmente una codifica è una funzione totale $f:D \to L$
 - Se f non è suriettiva allora diremo che è ridondante (1 a 1)
 - Se f non è iniettiva allora diremo che ambigua (più di 1 a 1)

- Sia D={cane, gatto, aquila} e
- e sia f rappresentata graficamente



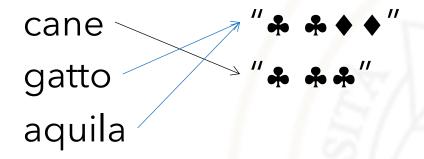
• f è ambigua e ridondante

• Sia D={cane, gatto, aquila} e L={"♣ ♣ ♦ ♦", "♣ ♣ ♣", "♦ ♦", "♦"} e sia f rappresentata graficamente



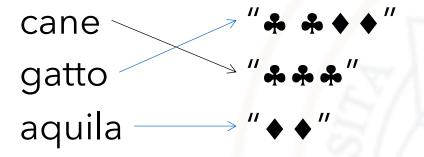
• f non è ambigua ma è ridondante

 Sia D={cane, gatto, aquila} e L={"♣ ♣ ♦ ♦", "♣ ♣ ♣"} e sia f rappresentata graficamente



• f non è ridondante ma è ambigua

• Sia D={cane, gatto, aquila} e L={"♣ ♣ ♦ ♦", "♣ ♣ ♣", "♦ ♦"} e sia f rappresentata graficamente



• f non è ambigua e non è ridondante

- Sia ND la cardinalità di D e NL la cardinalità di L
 - Se ND > NL qualsiasi codifica f: D \rightarrow L è ambigua
 - Se ND < NL qualsiasi codifica f: D \rightarrow L è ridondante
- Inoltre è bene notare che
 - Non ambiguo significa che f è iniettiva (ad elementi distinti di D corrispondono elementi distinti di L)
 - Non ridondante significa che f è suriettiva (ogni elemento di L è la codifica di almeno un elemento di D)
 - Quindi se f è non ambigua e non ridondate allora f è iniettiva e suriettiva, quindi è una funzione biunivoca
- Una funzione g: $L \rightarrow D$ è invece detta una decodifica di D
- Se f è non ambigua (ovvero iniettiva) allora è invertibile. Quindi, induce naturalmente una decodifica g=f⁻¹

Proprietà delle codifiche

- Abbiamo già visto
 - ambigua/non ambigua
 - ridondante/non ridondante
- Altre proprietà
 - Economicità: numero di simboli utilizzati per unità di informazione
 - Semplicità nell'operazione di codifica e decodifica
 - Semplicità nell'eseguire operazioni sull'informazione codificata

Rappresentazione dei numeri naturali

- Occupiamoci ora delle possibili codifiche dei numeri naturali 0,1,2,...
- Un codice ovvio è dato dal sistema di numerazione decimale basato su A={'0',...,'9'}.
- Tale sistema è un sistema posizionale ovvero ad ogni cifra di una parola è assegnato un peso differente a seconda della posizione nella sequenza. Ad esempio dato "4456"
 - '6' rappresenta sei unità (cifra meno significativa)
 - '5' rappresenta cinque decine
 - '4' rappresenta quattro centinaia
 - '4' rappresenta quattro migliaia (cifra più significativa)

Il sistema numerico <u>decimale</u> è un sistema di tipo posizionale ovvero:

Le cifre che compongono un numero cambiano il loro valore secondo la posizione che occupano

7237 (settemiladuecentotrentasette) in base 10

$$7x10^{3} + 2x10^{2} + 3x10^{1} + 7x10^{0}$$
 $7x1000 + 2x100 + 3x10 + 7x1$
 $7000 + 200 + 30 + 7 = 7237$

```
colonna dell'1
colonna del 10
colonna del 100
colonna del 1000
```

$$9742_{10} = 9 \times 10^{3} + 7 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$
nove sette quattro due
1000 100 1

Rappresentazione in base 10

 Decomponendo in potenze di 10, il numerale 1024 rappresenta il numero:

$$1 \times 10^3 + 0 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

• Generalizzando, un numerale $c_{m-1}c_{m-2}\dots c_0$ rappresenta

$$\sum_{i=0}^{m-1} c_i \cdot 10^i$$

• Il sistema decimale è quindi una codifica posizionale su base 10. Tuttavia non è l'unica, ad esempio i babilonesi utilizzavano un sistema di numerazione su base 60 (sessagesimale)

Number Systems

Decimal numbers

• Binary numbers

```
1's column
2's column
4's column
1101<sub>2</sub> =
```


Number Systems

Decimal numbers

```
10's column
100's column
1000's column
```

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^5 =$$

•
$$2^7 =$$

•
$$2^{10} =$$

$$\bullet$$
 2¹² =

$$\bullet$$
 2¹³ =

$$\bullet$$
 2¹⁴ =

$$\bullet$$
 2¹⁵ =

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

$$\bullet$$
 2⁹ = 512

$$\bullet$$
 2¹⁰ = 1024

$$\bullet$$
 2¹¹ = 2048

$$\bullet$$
 2¹² = 4096

$$\bullet$$
 2¹³ = 8192

$$\bullet$$
 2¹⁴ = 16384

$$\bullet$$
 2¹⁵ = 32768

Rappresentazione

• Il sistema decimale utilizza dieci simboli per rappresentare un numero

-

• Il sistema **binario** utilizza **due** simboli

• Il sistema **ottale** utilizza **otto** simboli

_

• Il sistema **esadecimale** utilizza **sedici** simboli

(

Α

C

) E --

Rappresentazione in una base generica

- Ad ogni naturale b>1 corrisponde una codifica in base b.
- L'alfabeto A_b consiste in b simboli distinti che corrispondono ai numeri 0,1,..., b-1.

• Analogamente al sistema decimale, un numerale di A_b rappresenta il numero $s_{m-1} \dots s_0$

di cifre

$$\sum_{i=0}^{m-1} s_i \cdot b^i$$

$$587_{10} = 5 \times 10^2 + 8 \times 10^1 + 7 \times 10^0$$

Consideriamo ad esempio il sistema ottale (base 8). A₈ consiste nelle cifre '0','1',...,'7'

$$13 \longrightarrow 1 \cdot 8^1 + 3 \cdot 8^0 = 8 + 3 = 11$$

$$5201 \longrightarrow 5 \cdot 8^{3} + 2 \cdot 8^{2} + 0 \cdot 8^{1} + 1 \cdot 8^{0} = 5 \cdot 8^{3} + 2 \cdot 8^{2} + 1 \cdot 8^{0} = 2560 + 128 + 1 = 2689$$

Rappresentazione in una base generica

A questo punto potrebbero sorgere delle ambiguità. Se qualcuno vi dicesse: 11 è un numero pari. Pensereste che sia impazzito. Lui potrebbe ribattere: certo! infatti in base 5

$$11 \longrightarrow 1 \cdot 5^1 + 1 \cdot 5^0 = 5 + 1 = 6$$

E' chiaro che bisogna mettersi d'accordo su quale sistema di numerazione si adotta di volta in volta. Per questo useremo delle notazioni standard:

- n denota un (generico) numero naturale, a prescindere dalla sua rappresentazione
- n_b denota un naturale rappresentato in base b
- Una **sequenza di cifre decimali** rappresenta un particolare naturale espresso in base dieci. Ad esempio 236 denota il numero duecentotrentasei
- Una **sequenza di cifre seguite da un pedice b** rappresenta un numero espresso in base b.
- esempio:

$$1001_2 = 2^3 + 1 = 9$$

Basi maggiori di 10

- Per basi b < 10 possiamo chiaramente ri-usare le usuali cifre '0',...,'9'. Ad esempio, la codifica in base 6 utilizza le cifre '0',...,'5' mentre quella in base 3 le cifre '0', '1' e '2' e così via.
- E per basi b>10?
 - Si prendono in prestito le lettere dell'alfabeto
 - Per b=16 le cifre adottate sono '0',...,'9','a',...,'f', dove:

$$a_{16} = 10$$
 $b_{16} = 11$
 $c_{16} = 12$ $d_{16} = 13$
 $e_{16} = 14$ $f_{16} = 15$

Esempio:

$$b3c_{16} = 11 \cdot 16^2 + 3 \cdot 16^1 + 12 \cdot 16^0 = 2816 + 48 + 12 = 2876$$

DEAFDAD 8 101100 bit meno bit più byte più byte meno signifisignifisignifisignificativo cativo cativo cativo (a) (b)

Basi maggiori di 10

7 1	∢7 11	∜7 21	₩7 31	₹ 7 41	₹ 7 51
?? 2	√97 12	4(77 22	(((7) 32	₹₹99 42	15. 77 52
үүү з	√үүү 13	(1777 23	((())) 33	42 999 43	15 177 53
ଫ 4	∜\$7 14	(1) 24	((()) 34	₹ \$\$\$ 44	14 54
777 5	∜∰ 15	∜ ₩ 25	₩ ₩ 35	45 45	**** 55
₩ 6	∜∰ 16	∜ ₩ 26	₩₩ 36	₹ ₩ 46	₹ ₩ 56
7	17	**** 27	## 37	₹ 47	57
8	18	() 28	₩₩ 38	₹ 48	₹ 58
## 9	4## 19	4 ## 29	州 3 9	19 49	₩₩ 59
(10	44 20	₩ 30	40	₩ 50	

Lunghezza di n rispetto ad una base

- Chiamiamo lunghezza di n rispetto a b il numero di cifre che occorrono per rappresentare n in base b
 - la lunghezza di 101 rispetto a 2 è 7: 1100101₂=101
 - la lunghezza di 101 rispetto a 10 è 3: 101₁₀ = 101
 - la lunghezza di 101 rispetto a 16 è 2: 65₁₆=101

• La lunghezza di un numerale decresce al crescere della base di codifica

Valore massimo rappresentabile

Riferendoci alla base 10

- Con 1 cifra rappresentiamo i numeri da 0 a 9
- Con 2 cifre i numeri da 0 a 99
- Con 3 cifre i numeri da 0 a 999
- Con m cifre i numero da 0 a 10^m-1

Quindi se indichiamo con $v_{\rm max}$ il maggior numero rappresentabile con m cifre in base 10 abbiamo $v_{max}=10^m-1$

Valore massimo rappresentabile

- E per una base diversa da 10 quale è il massimo valore rappresentabile con m cifre?
- Consideriamo, ad esempio, il caso b=2 e m=4, il massimo valore rappresentabile corrisponde al numerale 1111

$$11111_2 = 2^3 + 2^2 + 2^1 + 2^0 = 15 = 2^4 - 1$$

 Per una generico b e m il maggior numero rappresentabile si ottiene concatenando m volte la cifra "più alta" (b-1). Quindi:

$$v_{max} = (b-1)b^{m-1} + (b-1)b^{m-2} + \dots + (b-1)b^{1} + (b-1)b^{0} =$$

$$= (b \cdot b^{m-1} - b^{m-1}) + (b \cdot b^{m-2} - b^{m-2}) + \dots + (b \cdot b^{1} - b^{1}) + (b \cdot b^{0} - b^{0}) =$$

$$= b^{m} - b^{m-1} + b^{m-1} - b^{m-2} + \dots + b^{2} - b + b - 1 = b^{m} - 1$$

Cifre necessarie per rappresentare n

$$b^{m} - 1 \ge n$$
$$b^{m} \ge n + 1$$
$$m \ge \log_{b}(n + 1)$$

$$m \ge \log_b(n+1)$$

$$m = \lceil \log_b(n+1) \rceil$$

- Nella slide precedente avevamo il numero di cifre m e volevamo sapere quale è il massimo numero rappresentabile in una certa base b.
- Consideriamo il problema inverso: abbiamo un valore n e ci chiediamo quante cifre m occorrono per rappresentarlo.
- Chiaramente il massimo numero rappresentabile con m cifre dovrà essere maggiore o uguale a n
- In particolare cerchiamo il più piccolo m tale che

Binary Values and Range

N-digit decimal number

- How many values? 10^N
- Range? [0, 10^N 1]
- Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]

N-bit binary number

- How many values? 2^N
- Range: [0, 2^N 1]
- Example: 3-digit binary number:
 - $2^3 = 8$ possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Digressione: base unaria

- Ricordate che quando abbiamo introdotto i sistemi di numerazione abbiamo assunto la base b≥2.
- Perché non è possibile considerare una numerazione unaria? Certo! Ma ci sono delle controindicazioni...
 - La base unaria consta di una solo cifra I (detta in gergo matematico mazzarella
 - Una mazzarella rappresenta 0, due mazzarelle 1, ..., n+1 mazzarelle rappresentano n
 - IIIII₁=5
 - Notate che a prescindere dalla posizione ogni mazzarella vale 1, quindi questo sistema non è posizionale
 - Non potrebbe essere altrimenti visto che 1 elevato ad una qualsiasi potenza è sempre uguale a 1!