
Candidato (cognome, nome, matricola):

Riportare le <u>risposte sintetiche</u> negli spazi appositi, scrivere lo <u>svolgimento</u> per esteso su fogli a parte che allegherete. Sulla prima facciata di ogni foglio allegato, in alto al centro, scrivere COGNOME e NOME e indicare di volta in volta il numero dell'esercizio che si sta svolgendo.

ESERCIZIO A.1 (3 PUNTI) Osservando dominio e asintoti, dire quali delle seguenti leggi può avere questo grafico

- $\frac{x-3}{(x+2)}$
- \Box $\frac{5(x+2)}{x^2}$
- \Box $\frac{x+2}{(x-3)^2}$

ESERCIZIO A.2 (6 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge

$$f(x) = e^{1-x}(x^3 - 1),$$

2.a) Calcolare la derivata prima e la derivata seconda

$$f'(x) = f''(x) =$$

- 2.b) Scrivere l'equazione della retta tangente in x=1
- 2.c) Scrivere l'approssimazione di Taylor di ordine 2 (con resto di Peano) in x=1
- 2.d) Completare la frase: Per il Teorema di Lagrange nell'intervallo [0,1] sappiamo che esiste un punto...

ESERCIZIO A.3 (8 PUNTI) ALLEGARE SVOLGIMENTO

- A.5.a) Calcolare l'integrale definito $\int\limits_0^1 e^{3x}(x+2)\,dx$
- A.5.b) Determinare una primitiva di $\frac{2x-1}{x^2+2x+2}$

ESERCIZIO A.4 (7 P	UNTI) ALLEGARE	SVOLGIMENTO:	Data la funzione legge
--------------------	----------------	--------------	------------------------

$$f(x) = \frac{x(x+2)}{e^x - 1},$$

determinare

dom(f) =

4.b) limiti alle estremità del dominio e eventuali asintoti:

$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:

4.c) se si può applicare il Teorema degli zeri nell'intervallo [-2, -1].

\square sì	\square no

ESERCIZIO A.5 (10 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge

$$f(x) = \frac{x e^x}{6x - 1},$$

determinare

A.5.1) il dominio naturale

$$dom(f) =$$

A.5.2) la derivata, gli intervalli di monotonia e gli eventuali estremi relativi :

calcolare la derivata e verificare che $f'(x) = \frac{\left(6x^2 - x - 1\right)e^x}{\left(6x - 1\right)^2}$ f crescente negli intervalli: f decrescente negli intervalli:

punti stazionari in x =punto di max. relativo in x =

A.5.3) i valori estremi assoluti (precisando se sono min/max), l'immagine e l'iniettività:

$$\sup f =$$
 è il massimo? \square sì \square no
$$\lim f =$$
 è il minimo? \square sì \square no
$$\lim f =$$
 è iniettiva? \square sì \square no

A.5.4) grafico: (nel foglio allegato)

Candidato (cognome, nome, matricola):		
Riportare le <u>risposte sintetiche</u> negli spazi appositi, scrivere lo <u>svolgimento</u> per esteso su fogli a parte che allegherete. Sulla prima facciata di ogni foglio allegato, in alto al centro, scrivere COGNOME e NOME e indicare di volta in volta il numero dell'esercizio che si sta svolgendo.		
ESERCIZIO B.1 (3 PUNTI) Osservando dominio e asintoti, dire quali delle seguenti leggi può avere questo grafico		
-40 -55 -50 -55 -50 -15 -10 -5 -5 -50 -15 -10 -5 -5 -50 -15 -10 -5 -50 -10 -50 -10 -50 -10 -10 -5 -50 -10 -10 -50 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1		
$ \Box \frac{5(x-3)}{x+2} \qquad \Box \frac{(x-3)^2}{x+2} \qquad \Box \frac{x-3}{(x+2)^2} \qquad \Box \frac{5(x+2)}{x-3} \qquad \Box \frac{(x+2)^2}{x-3} \qquad \Box \frac{x+2}{(x-3)^2} $		
ESERCIZIO B.2 (6 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge		
$f(x) = e^{2x} \sin x,$		
2.a) Calcolare la derivata prima e la derivata seconda		
f'(x) =		
f''(x) =		
2.b) Scrivere l'equazione della retta tangente in $x=0$		
2.c) Scrivere l'approssimazione di Taylor di ordine 2 (con resto di Peano) in $x=0$		
2.d) Completare la frase: Per il Teorema di Lagrange nell'intervallo [0,1] sapiamo che esiste un punto		
ESERCIZIO B.3 (8 PUNTI) ALLEGARE SVOLGIMENTO		
B.5.a) Calcolare l'integrale definito $\int\limits_0^1 (2x-1)\cos(\pi x)dx$		
B.5.b) Determinare una primitiva di $\frac{2x+1}{x^2-2x+2}$		

esercizio b.4	(7 PUNTI)	ALLEGARE SVOLGIMENTO:	Data la funzione legge

$$f(x) = \frac{\log(1+x^2)}{x},$$

determinare

4 a)	dominio	naturale
4.a	, aominio	naturale

dom(f) =

4.b) limiti alle estremità del dominio e eventuali asintoti:

$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:

4.c) se si può applicare il Teorema degli zeri nell'intervallo [1/2,2].

 \square sì \square no

ESERCIZIO B.5 (10 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge

$$f(x) = \frac{x e^x}{2x + 9},$$

determinare

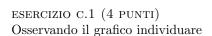
B.5.1) il dominio naturale

$$dom(f) =$$

B.5.2) la derivata, gli intervalli di monotonia e gli eventuali estremi relativi :

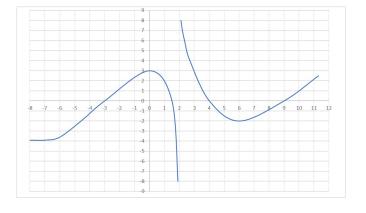
calcolare la derivata e verificare che $f'(x) = \frac{\left(2x^2 + 9x + 9\right)e^x}{\left(2x + 9\right)^2}$ f crescente negli intervalli: f decrescente negli intervalli:

punti stazionari in x =punto di max. relativo in x =punto di min. relativo in x =


B.5.3) i valori estremi assoluti (precisando se sono min/max), l'immagine e l'iniettività:

$$\sup f =$$
 è il massimo? \square sì \square no
$$\lim f =$$
 è il minimo? \square sì \square no
$$\lim f =$$
 è iniettiva? \square sì \square no

B.5.4) grafico: (nel foglio allegato)


Candidato (cognome, nome, matricola):

Riportare le risposte sintetiche negli spazi appositi, scrivere lo svolgimento per esteso su fogli a parte che allegherete. Sulla prima facciata di ogni foglio allegato, in alto al centro, scrivere COGNOME e NOME e indicare di volta in volta il numero dell'esercizio che si sta svolgendo.

- immagine:
- se la funzione è iniettiva
- l'insieme di positività, cioè gli x tali che $f(x) \ge 0$

- gli eventuali punti estremanti relativi
- gli eventuali asintoti orizzontali
- gli eventuali asintoti verticali
- gli intervalli di monotonia, precisamente
- è crescente negli intervalli
- è decrescente negli intervalli

ESERCIZIO C.2 (6 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge

$$f(x) = e^{x-1}(1-x^3),$$

2.a) Calcolare la derivata prima e la derivata seconda

$$f'(x) =$$

$$f''(x) =$$

- 2.b) Scrivere l'equazione della retta tangente in x = 1
- 2.c) Scrivere l'approssimazione di Taylor di ordine 2 (con resto di Peano) in x=1

ESERCIZIO C.3 (7 PUNTI) ALLEGARE SVOLGIMENTO

- C.5.a) Calcolare l'integrale definito $\int_{-1}^{\infty} (3x^4 e^{2x}) dx$
- c.5.b) Determinare una primitiva di $\frac{5x+4}{x^2+x-2}$

ESERCIZIO C.4 (7 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione legge

$$f(x) = \frac{x + e^x}{x - 2},$$

rmin	

4 a)	dominio	naturale
4.01	аошнио	павшав

4.b) limiti alle estremità del dominio e eventuali asintoti:

$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:
$\lim_{x \to \infty}$	asintoto:

4.c) se si può applicare il Teorema degli zeri nell'intervallo [0, 1].

\Box sì \Box no

ESERCIZIO C.5 (10 PUNTI) ALLEGARE SVOLGIMENTO: Data la funzione di legge

$$f(x) = \frac{x e^x}{2x - 1},$$

determinare

c.5.1) il dominio naturale

$$dom(f) =$$

C.5.2) la derivata, gli intervalli di monotonia e gli eventuali estremi relativi :

calcolare la derivata e verificare che $f'(x) = \frac{\left(2x^2 - x - 1\right)e^x}{(2x - 1)^2}$ f crescente negli intervalli: f decrescente negli intervalli:

punti stazionari in x =punto di max. relativo in x =

C.5.3) i valori estremi assoluti (precisando se sono min/max) e l'immagine:

$$\sup f =$$
 è il massimo? \square sì \square no
$$\inf f =$$
 è il minimo? \square sì \square no
$$\operatorname{Im} f =$$

c.5.4) grafico: (nel foglio allegato)