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Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distrib-
uted in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and
humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media.
Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are
useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions
that vary according to the origin, process of obtainment, and functional groups present in their structures, such
as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species
(ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and
carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions,
such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups
in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the
main multifunctionalities of HAs associated with their structures and properties, focusing on human health
applications, and we note perspectives that may lead to novel technological developments. To the best of our
knowledge, this is the first review to address this topic from this approach.
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1. Introduction

Humic acids (HAs) are macromolecules that comprise humic sub-
stances (HS), which are organic matter distributed in terrestrial soil,
.A. Santana).
natural water, and sediments resulting from the decay of vegetable
and natural residues [1]. Commercial HAs are extracted from peat and
coal, which are non-renewable sources of carbon. Recently, it was dem-
onstrated that HAs could be produced by fermentation using the empty
fruit bunch (EFB) of palm trees as a substrate, which is a natural and sus-
tainable resource [2]. Furthermore, chemical synthesis can also be used
to produce HAs through polymerization/condensation reactions [3,4].
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HAs are the fractions of HS that are soluble in alkaline media,
partially soluble in water and insoluble in acidic media [5,6]. This classi-
fication parameter may vary with the HAs composition, pH, and ionic
strength [7]. Due to their amphiphilic character, HAs form micelle-like
structures, called pseudo-micelles in neutral to acidic conditions [8,9].
This property has been explored for use in pollution remediation
[10–14] and to increase the water solubility of hydrophobic drugs
[15,16].

HAs contain different functional groupswhose quantities depend on
the origin, age, climate, and environmental conditions of extraction/
production of theHAs [5,17,18]. The various functions of HAs aremainly
attributable to the phenol and carboxylic acid functional groups [19],
which allow the deprotonation of OH/OOH. This situation provides HAs
with many capabilities, such as the improvement of plant growth and
nutrition [20–23], complexation with heavy metals [24], and antiviral
and anti-inflammatory activity [25–29]. In addition, the presence
of phenols, carboxylic acids and quinones in the structure of HAs is relat-
ed to their antioxidant, antimutagenic/desmutagenic and fungicidal/
bactericidal activities [30–33].

The use of HAs is quite consolidated in agriculture [34,35] and
pollution remediation [36,37]. Recently, review articles by Calvo et al.
[38] and Canellas et al. [39] addressed the specific effects of HAs on
plants and their role on the plant growth, yield and nutrient uptake.
Meanwhile, Tang et al. [40] and Sun et al. [41] discussed the importance
of HAs in the treatment of water and waste gas, respectively. In
medicine, HAs have been studied for the treatment and prevention of
diseases [31,42–44]. The main medical aspects and applications of HAs
were described by Klöcking & Helbig [27]. More recently, van Rensburg
[45] highlighted the anti-inflammatory properties of HS in a mini-
review. However, the application of HAs in the pharmaceutical and
cosmetic fields has not been well explored despite their great potential,
such as in the solubilization of hydrophobic drugs, in UV–visible
absorption and as an antioxidant [15,16,30,46]. In previous work, we
demonstrated that HAs interact with Pluronic F127 (PF127) to form
stable nanoparticles, which can be used for pharmaceutical applications
as-is or after entrapping nonpolar drugs [47]. In 2005, Peña-Méndez
et al. [48] noted the applications of HS in environmental and biomedical
applications. However, there is a lack of published studies that bring
together all the functional effects of HAs related to their structural prop-
erties, as well as their toxicity and applications, especially in pharma-
ceutical and cosmetic areas.

Therefore, this review aims to be the first to present the multi-
functionalities of HAs, associating themwith their structure and proper-
ties, and note novel technological developments. Moreover, the role of
HAs in human health is highlighted.

2. HAs structure and composition

The chemical composition of HAs can vary according to geographical
origin, age, climate and biological conditions, making the precise
Fig. 1.Model of HA structure.
Figure adapted with permission from Mirza et al. [15]. Copy
characterization of these substances difficult [49]. Their molecular
weights are in the range of 2.0 to 1300 kDa [17], and they contain
many functional groups, as shown in Fig. 1. HAs are mainly composed
of phenolic, carboxylic acid, enolic, quinone, and ether functional groups
but may also include sugars and peptides [5]. However, the phenolic
and carboxylic groups are more prevalent in HAs structures. The huge
structure of an HA molecule is composed of hydrophilic portions,
consisting of OH groups, and hydrophobic portions, consisting of
aliphatic chains and aromatic rings.

Thephenolic and carboxylic groups are responsible for theweak acid
behavior of HAs. The total acidity (phenolic + carboxylic group acidity)
of the compounds extracted from soil, water, and geologic deposits was
found to be approximately 6 meq g−1 [50].

Quinones are electron-accepting groups and are responsible for the
production of reactive oxygen species (ROS). They are reduced to
semiquinones, which are stabilized by their aromatic rings and further
reduced into hydroquinones, which are even more stable (Fig. 2) [51].

Aeschbacher et al. [52] evaluated the electron-accepting (quinone)
and electron-donating (phenol)moieties inHAs obtained fromdifferent
sources. The origin and age of these substances were found to have a
direct effect on their redox properties. 13C NMR analyses have shown
that aquatic HAs have higher numbers of electron-donating and lower
numbers of electron-acceptingmoieties than terrestrial HAs, as verified
by Scott et al. [51]. The authors supported the hypothesis that the
phenolic groups in HAs slow the oxidative transformation of quinones,
increasing their permanence in oxic environments.

There is an agreement in the literature on the average elemental
composition of HAs extracted from different sources, including
commercial HAs, which are approximately 50% C, 35% O, and 5% H,
with the remaining percentage distributed between N and S, as shown
in Table 1.

3. HAs properties

Themain properties of HAs, such as solubility, pHdependence, inter-
action with hydrophobic groups, and metal chelation, are related to
their structure, i.e., their amphiphilicity and the different functional
groups that comprise each molecule. Table 2 shows the functional
effects of HAs used in different applications areas, relating them to
their structural properties.

3.1. Solubility and pH dependence

HAs are generally considered soluble in neutral to alkaline condi-
tions [5]. This property varies with the chemical composition of these
substances and thereby with their origin.

In alkaline media, phenolic and carboxylic groups are deprotonated,
and the repulsion of these negatively charged groups causes the
molecules to assume a stretched configuration. Upon decreasing the
pH, the functional groups are protonated, and the effects of repulsion
right (2011) Taylor & Francis Ltd. (www.tandfonline.com).

http://www.tandfonline.com


Fig. 2. Quinone, semiquinone, and hydroquinone structures and their oxy-redox reactions.
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are minimized, causing the molecule to adopt a coiled and compact
structure. In this stage, the hydrophobic portions are in the interior
of the structure, and the hydrophilic portions are in contact with
the aqueous medium. This behavior is responsible for the detergent
characteristics of HAs, their micelle-like organization, and the decrease
of the superficial tension. These molecules form aggregates on an intra-
molecular level, followed by intermolecular aggregation and ultimately
precipitation, as suggested by von Wandruszka [9] and shown in
Fig. 3.

Prado et al. [89] have noted that pH is related to not only the
solubility but also the stability of aqueous suspensions of HAs. A diffuse
electric double layer is formed around the charged particles, protecting
them and allowing the system to become uncharged. Moreover, the ion
concentrations determine the particles' charge protection, which is
greater for lower ionic strength systems because the ionic species will
have a stronger interaction with the electric layer than with the solvent
molecules.

At neutral pH, the solubilization of HAs is only partial. Although HAs
can be found dissolved in water in nature, not all isolated solid prepara-
tionswill dissolve. Klucˇáková&Pekarˇ [6] proposeddifferent dissolution
mechanisms for a lignite HAs–water suspension in which the solid has
insoluble and soluble fractions. Because HAs are a weak polyelectrolyte,
they can exist in water as dissolved molecules and in the dissociated
form (Eq. (1)). This mechanism corresponds to the soluble fraction of
HAs. The insoluble fraction interacts with the environment through
the surface and acts as an ion-exchanger by releasing H+ ions into
solution while anions remain insoluble (Eq. (2)).

HA Sð Þ ↔ HA aqð Þ ↔ Hþ
aqð Þ þ A−

aqð Þ ð1Þ

HA Sð Þ ↔ Hþ
aqð Þ þ A−

Sð Þ ð2Þ

Therefore, the dissolution of HAs molecules in water is more com-
plex than that of common sparingly soluble solids because HAs are
Table 1
Elemental compositions of HAs extracted from different sources.

HAs C (%) H (%) N (%) O (%) S (%) References

Commercial
(Sigma-Aldrich)

55.6 5.5 4.5 34.4 1.2 [33]

Soil IHSS standard 58.1 3.7 4.1 34.1 – [53]
Peat soil 50.4 4.9 2.8 39.1 0.7 [44]
Sediments 43.7–53.8 4.1–5.8 3.5–6.2 31.1–37.1 – [45]
Sewage sludge 52.8 6.8 6.5 33.9 0.1 [54]
EFB⁎ 56.3 5.7 4.4 32.9 1.2 [32]
River 51.2 4.7 2.6 40.4 1.9 [55]
Leonardite 63.8 3.7 1.2 31.3 – [53]

⁎ EFB— Empty Fruit Bunch.
not a single component but a mixture of components, only some of
which are soluble in water.

3.2. Amphiphilic character

Many studies in the literature have reported the use of HAs as an
alternative for solubilizing nonpolar substances in aqueous environ-
ments [10–14], with greater emphasis on their interaction with polycy-
clic aromatic hydrocarbons (PAHs), which are relatively insoluble in
water and exhibit toxicity and carcinogenicity. The interactions
between HAs and these nonpolar contaminants are noncovalent, and
these compounds are solubilized at the hydrophobic core of HAs
pseudo-micelles [24].

3.2.1. Solubilization of hydrophobics
Lassen & Carlsen [11] verified the effect of dissolved commercial

HAs in solubilizing solid fluorene and its heteroanalogs: carbazole,
dibenzofuran, and dibenzothiophene. The PAHs were dispersed in
water containing different amounts of HAs, and an increase in the
apparent aqueous solubility of all PAHs that was also affected by HAs
concentration was observed. The solubility of fluorene increased by
50% in the presence of 0–200 mg L−1 HAs, while the solubility of
dibenzothiophene increased by more than 600% in the presence of 0–
100 mg L−1 HAs. Furthermore, it was found that HAs adsorb to dis-
persed PAHs particles, but this sorption competes with the dissolution
mechanism. Thus, lower sorption leads to a stronger solubility effect
of HAs on the PAHs particles. The constant of interaction, K, will vary
among PAHs and decreases as the concentration of HAs in the solution
increases. This behavior may be related to changes in the conformation
of theHAs structure,which tends to coil upwith increasingHAs concen-
tration, as also found with decreasing pH and increasing ionic strength
[90]. This coiling restricts the hydrophobic interaction between the
two substances because the nonpolar fraction of HAs is located in the
inner portion of the structure.

More recently, Tejeda-Agredano et al. [12] investigated the influence
of HAs on the biodegradation of PAHs bymicroorganisms. The availabil-
ity of these compounds tomicroorganisms is affected by their lowwater
solubility, which interferes with their dissipation in polluted soil and
sediments. Their study showed that the degradation of pyrene at a con-
centration above its solubility was significantly faster in the presence of
HAs. On the other hand, HAs can inhibit cell adhesion on PAHs surfaces,
limiting the biodegradation process.

In the medical, pharmaceutical, and cosmetic areas, different
strategies for increasing the aqueous solubility of nonpolar compounds
have been explored recently using such carriers as lipid nanoparticles
[91], liposomes [92], cyclodextrins [93], and polymeric particles [94].
In addition to solubilizing hydrophobic compounds, HAs have surfac-
tant characteristics, which makes them a potential new technology for
cosmetic and drug delivery. Few studies in the literature have reported



Table 2
Applications of HAs and their functional effects related to their structures.

HAs technological application Functional effects Structural properties References

Pollution remediation Chelates heavy metals OH/OOH deprotonation [24,36,37,40,41,56–59]
Solubilizes hydrophobic pollutants Amphiphilic character [10–14,60,61]

Agriculture Plant growth and nutrition OH/OOH deprotonation [22,23,34,35,39]
Plant growth and nutrition Production of active oxygen (ROS) [38,62–64]
Bactericidal Production of active oxygen (ROS) [32,65]
Fungicidal Production of active oxygen (ROS) [33]

Medicine Antiviral OH/OOH deprotonation [25–27,29,46,66]
Anti-inflammatory OH/OOH deprotonation [27,28,45,67–70]
Antimutagenic/desmutagenic Presence of OOH [31,44,71–73]
Wound healing Production of active oxygen (ROS) [27,42,45,74,75]
Cancer therapy Production of active oxygen (ROS) [42,76–79]
Prion disease therapy OH/OOH deprotonation [38]

Pharmaceutical and cosmetic UV–vis protection UV–vis absorption [3,46,80]
Antioxidant Presence of OH [30,52,81–85]
Drug solubilizer and carrier Amphiphilic character [15,16,47,86–88]
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the use of HAs as an alternative means of solubilizing, loading, and con-
sequently enhancing the bioavailability of hydrophobics. Such studies
will be discussed further below.
3.3. Binding cationic metals

The ability of HAs to bind cationic metals and form complexes
makes them useful in various applications, such as the transport of
micronutrients from the soil to plants [20], the removal of heavy metals
from soil and water [24], the inhibition of the formation of free radicals
by metal catalysis [95], reduction, and stabilization of metal nanoparti-
cles [96].

The role of metal ions in solution is the same as that of H+ ions,
namely, charge neutralization, and the higher the charge, the more
effectiveness the cation is in the formation of pseudo-micelles. Further-
more, multivalent cations interact with phenolic and carboxylic groups
on adjacent chains, enhancing pseudo-micellar domains and the
detergent effect. The mechanism of this interaction proposed by von
Wandruszka [9] is as follows. The interaction between HAs molecules
and metal cations is initially entirely electrostatic, and the cations
move to their thermodynamically preferred locations within the struc-
ture. This process forms spherical HAs-metal complexes, as shown in
Fig. 4. Studies on HAs-metal binding have shown that this interaction
varies according to the metal and is influenced by the metal concentra-
tion and the origin, molecular weight, and concentration of HAs [24,97].

Christl et al. [97] demonstrated that the binding capacity between
HAs and metals is associated with the molecular size of HAs. 13C NMR
analysis verified that HAs fractions with lower molecular weight have
the highest number of phenolic and carboxylic groups and are therefore
the fractions that can bind metals most efficiently. In another work,
Christl & Kretzschmar [99] observed that higher concentrations of
metal could improve the effectiveness of the interaction. At high
concentrations of Cu2+, the binding capacity of HAs was improved,
especially in smaller molecules. In the same work, protonation assays
were performed using Cu2+, and the H+/Cu2+ exchange ratios of HAs
suggested that Cu and HAs bind as monodentate and bidentate
Fig. 3. Behavior of HAsmolecules in alkaline conditions and the aggregation process upon pH re
Decreasing pH: intermolecular aggregation (C). Acidic pH: precipitation (D).
complexes. However, these characteristics vary according to the metal
being complexed.

Yates & von Wandruszka [24] verified the affinity of leonardite HAs
with different metals by retention in an HAs-packed column, finding
that Pb2+ and Cu2+ had the greatest affinity for the column and that
Mg2+ had the lowest. The low retention of Mg2+ is attributed to the
low availability of HAs sites to this ion because of its large radius,
which is the largest among the cations tested.

The ability of HAs to bindmetals and form complexes, enabling their
use as a pollution remedy by removing heavy metals from water and
soil, is a fairly recent topic in the literature [56–59]. However, if the
environment is acidic, which is typical of metal-polluted water, the
solubility of HAs is reduced, which interferes in the formation of HAs-
metal complexes.

4. Role in human health

Relative to their applications in agriculture and pollution treatment,
there are few discussions of the use of HAs for the benefit of human
health and wellness in the literature. In the following section, we will
consider the effects andmechanisms of HAs in medical, pharmaceutical
and cosmetic contexts as well as their toxicity to the human organism.

4.1. Medicine

Severalworks in the literature have studied themedicinal properties
of HAs, which have been reported to be strong allies in the treatment of
many diseases. The antiviral activity of HAs was observed against many
viruses, such as cytomegalovirus (CMV), vaccine viruses, and human
immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) [25,27,29].
HAs molecules, which assume a negative charge in neutral to basic
media, can inhibit virus replication by binding cationic domains of the
virus, which are necessary for virus attachment to the cell surface [29].
The anti-HIV activity of these substances was demonstrated through
inhibition of the infectivity of in vitro human lymphocytes, in addition
to blocking the formation of syncytia between infected and non-
infected lymphocytes [26]. vanResburg&Naude [67] have demonstrated
duction. Alkaline pH: charge repulsion (A). Decreasing pH: intramolecular aggregation (B).



Fig. 4. Interaction of Mg2+ ions with an HA molecule and its folding around the hydrophobic region.
Figure adapted with permission from Engebretson & von Wandruszka [98] Copyright (1994) American Chemical Society.
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that potassium humate inhibits the production of inflammatory
cytokines (TNF-α, IL-1β and IL-6) due to the binding properties of HS,
and Junek et al. [28] have shown the bimodal effect of HAs on (LPS)-
induced TNF-α release in human U937 cells. TNF-α is a cytokine
with an important protective role against microbial effects, but at high
levels, it is associated with many inflammatory diseases [100,101].
It was shown that at low concentrations of HAs, the TNF-α release is
enhanced (pro-inflammatory effect), whereas at high concentrations
(N100 μg ml−1), the release is reduced approximately 10-fold (anti-
inflammatory effect). The authors attributed the bimodal effect of HAs
to the presence of negatively charged functional groups because it is
known that other polyanionic compounds induce changes in cytokine
production.

HAs are also recognized as inhibitors of mutagenesis, possessing an
antimutagenic activity that blocks the mutagenesis process inside the
cell and a desmutagenic activity that inhibits mutagenesis outside the
cell [44]. Ferrara et al. [31] have investigated the capacity of HAs to
reduce the mutagenicity of mitomycin C (MMC) in the human
lymphoblastoid cell line TK6. A significant desmutagenic activity in
cells treated with a combination of HAs (leonardite and soil HAs) was
verified by the induction of micronuclei (MN), whereas the
antimutagenic activity was observed in a more limited way. In both
cases, higher efficiency was observed at higher HAs concentrations,
and the results varied with the type of HAs used. The authors related
the biological activity to the concentration and composition of HAs,
which changes according to the origin, age, and biological conditions
of the HAs, as already mentioned.

Prion diseases are a group of neuropathies caused by a conforma-
tional modification in the structure of prion proteins (PrP). Normal
PrP (PrPC) are induced by a modified protein (PrPSC) that changes
their conformation from αhelical motifs to βsheet secondary
Fig. 5. Redox cycl
structures through a posttranslational process [102]. In Legname et al.
[43], it was found that HAs could eliminate PrPSC infectivity from chron-
ically infected living cells. Themechanismproposed by the authors is di-
rect binding between HAs and PrPC blocking the conversion reaction
from the normal PrP to the misfolded one.

The ability of HAs to bindmetalswas explored inmedicine in a study
by Litvin & Minaev [96]. The group synthetized silver nanoparticles
(AgNPs) coated with synthetic HAs by electrostatic interactions to
obtain a combination of biologically active nanoparticles for medical
applications. It was verified that HAs were able to stabilize AgNPs via
their repulsive forces for a long period of time (1 year). In addition,
the antibacterial abilities of HAs enhance this effect on the AgNPs,
suggesting that these conjugated nanoparticles have great potential in
the preparation of pharmaceuticals.

HAs can have a positive effect onwound healing and cancer therapy,
as suggested by Jurcsik [42]. The healing process requires extra oxygen,
and this demand appears in the first minute after wounding due to
phagocytosis, the main event in wound healing process, which is very
oxygen-consumptive [42]. Semiquinones are able to produce ROS
through different mechanisms, as shown in Fig. 5. In the presence of
molecular oxygen, semiquinones produce superoxide ions, which are
converted to hydrogen peroxide in the presence of superoxide dismut-
ase. The superoxide ions produce hydroxyl radicals by reacting with
transition metals (Fenton reaction) or hydrogen peroxide (Harber–
Weiss reaction).

Quinones are widely studied in cancer therapy because ROS cause
oxidative stress and induce apoptosis in cancer cells through DNA
fragmentation and can also act as an intracellular signal of the apoptosis
cascade. Moreover, quinones directly interfere in the apoptosis of
normal and cancer cells in a concentration-dependent manner [76–79,
103].
e of quinone.
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4.2. Pharmaceutical and cosmetic areas

Although studies involving HAs in pharmaceutical and cosmetics
applications remain scarce, the results note the potential of HAs as func-
tional agents in the prevention or treatment of various diseases.

HAs in natura may be used in sunscreen, anti-aging, and skin care
products in general due to their ability to absorb in the UV–visible
range. Klöcking et al. [46] studied the potential of HAs as a component
of lipsticks to prevent the reactivation of the herpes simplex virus by UV-
light. It was shown that HAs in concentrations higher than 100 μg ml−1

were able to protect U937 cells from UV-induced damage. These charac-
teristics make HAs viable as components of functional lipsticks.

The antiviral activity of HAs could also be explored in cosmetics as a
component of facial masks, which are used for the prevention of viral
reactivation after a chemical facial treatment, as described by Wollina
[104].

Thephenolic groups inHAs act as electron-donating agents, scaveng-
ing free radicals and preventing chain reaction initiation. In addition,
they are able to chelate metals, particularly iron and cooper, inhibiting
the formation of free radicals by transition metal catalysis, controlling
lipid peroxidation and DNA fragmentation [30,52]. These antioxidant
properties are also useful in cosmetic and pharmaceutical applications.

Khil'ko et al. [30] have evaluated the antioxidant capacity of HAs
from brown coal through their behavior in inhibiting radical-chain
oxidation process of cumene and ethylbenzene initiated by
azobisisobutyronitrile (AIBN) and dimethyl sulfoxide (DMSO). It was
verified that the rate of oxygen absorption decreased significantly in
the presence of HAs, and at high concentrations (10 g L−1), the oxida-
tion process was completely halted. Adam & Needham suggested the
use of HAs derivatives as natural antioxidants for food preservatives
but with potential use for a variety of purposes, such as in cosmetic
applications and as nutritional supplements. These derivatives were
obtained by reductive cleavage techniques and were more efficient
and cost effective than other food antioxidants.

Indirectly, HAs could act as solubilizing agents, carrying pharmaceu-
tical and cosmetic active ingredients in their micelle-like structures to
enhance their water solubility. Carbamazepine (CBZ) is an antiepileptic
drug that is practically insoluble in water and therefore has a poor
bioavailability. Mirza et al. [15] evaluated the water solubility, release,
and anticonvulsant activity of CBZ complexed with HAs. The solubility
of the complex was greatly increased compared to that of the free
drug and that of the drug release conducted in a dialysis bag. The anti-
convulsant activity was studied in mice using the maximum electro-
shock seizure (MES) experiment, and the potency of CBZ-HAs was
threefold higher than that of the free drug.

Complexes of β-carotene and HAs were synthesized byMartini et al.
[16] to increase β-carotene water solubility. These carotenoids have
important biological activities, including antioxidant properties and as
a precursor of vitamin A, but their hydrophobicity restricts their use in
the pharmaceutical, cosmetic, and food fields. The authors showed
that the water solubility of β-carotene was strongly increased by
complexation to HAs, and its stability towards light irradiation was
improved by approximately 60%.

Ghosal [86] and Khanna et al. [87] developed delivery systems from
HSs for active ingredients (pharmaceutical, nutritional, and cosmetic)
with low solubility. The systems consisted of complexes between HSs
and drugs produced by hydrophobic bonding, covalent bonding, or
chelation. These systems were capable of increasing drug solubility,
permeability, and bioavailability and were suitable for topical or oral
administration. Therefore, HAs are a promising matrix for the incorpo-
ration of bioactive ingredients in nano- or microstructures.

4.3. Toxicity

HAs toxicity is recognized as being remarkably low [105–107]. Der-
mal tests conducted on both rats and rabbits revealed no abnormalities
in acute or chronic toxicity studies with HS preparations, and no local
irritancy was observed [105]. The effects of ocular irritation caused by
HAswere also evaluated byHen's Egg Test-ChorionAllantoicMembrane
(HET-CAM) testing by Wiegleb et al. [108], and irritation in mucous
membranes and skin was not detectable at HAs concentrations up to
10%. Sato et al. [44] conducted mutagenic tests using Salmonella
typhimurium TA100 and TA98, andmutagenic effectswere not observed
for HAs preparations.

Nonetheless, the ROS present in HAs could mediate toxicity at
certain concentrations [109,110]. Some works in the literature have
reported HAs as being toxic to many mammalian cells [111–113] and
contributing to Blackfoot disease [114]; both of these activities are
related to ROS.

Nevertheless, the phenolic portions of HAs are able to slow the
oxidative transformation of quinones [52]. HAs have a “buffering effect”,
which means that they are able to produce and to bind ROS [42]. This
finding is in agreement with the view that HAs have great potential as
natural antioxidants despite the presence of quinone groups.

5. Novel technological developments

HAs have substantial potential to be used in pharmaceutical and cos-
metics areas because they can act directly or indirectly in the prevention
and remediation of many complications of the human body.

These functional effects could be improved through the interaction
of HAs with surfactants [115,116]. In previous work, we demonstrated
that HAs were able to interact with the nonionic surfactant PF127 by
amphiphilic and electrostatic interactionsdue to their amphiphilic char-
acter and their potential to assume a negative charge by deprotonation
of the OH/OOH groups [47]. The interactions formed stable and spheri-
cal HAs-PF127 nanoparticles with a highly hydrophobic core, which can
be used for pharmaceutical applications as-is or after entrappingnonpo-
lar drugs, increasing their water solubility and bioavailability.

6. Conclusions

HAs have beenwidely explored for several years for their benefits in
agriculture and pollution remediation. They are known to enhanceplant
growth and nutrition and act as soil bactericidal and plant fungicidal
agents, and they can be used to remove pollutants from water and
soil. Inmedicine, they can act as antiviral and anti-inflammatory agents;
have uses in wound healing, cancer and prion disease therapy; and
exhibit antimutagenic/desmutagenic potential. In pharmaceutical and
cosmetic areas, the use of HAs is recent but very promising. They are
known to protect against UV–vis radiation and can act as antioxidants.
Further applications include their use as solubilizing agents and for
transporting hydrophobic active compounds, two applications that
may be improved by their administration as HAs-surfactant nanoparti-
cles. This novel technology will enable the production of stable HAs
nanoparticles, with a large hydrophobic core that could be used for
the encapsulation of nonpolar drugs, improving their delivery and
bioavailability.
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