Corso di Laurea in Ingegneria Informatica, Biomedica e delle Telecomunicazioni

Corso di Campi Elettromagnetici a.a. 2017-2018

# 24 Maggio 2018

Antenna Parameters

Parameters of the Tx Antenna

Parameters of the Rx Antenna

# Summary of the past lectures TX Antenna Parameters

- Effective length
  - Radiation pattern
  - Radiation pattern lobes
  - Beamwidth
- Directivity
- Gain
- Radiation Resistance
- Equivalent circuit of the tx antenna
- Input Impedance and Input Resistance



Antenna Parameters

Parameters of the Tx Antenna

### Parameters of the Rx Antenna

# Receiving mode

- When an antenna is operating as a receiving antenna, it extracts a certain amount of power from an incident electromagnetic wave.
- Since an incident wave comes from a far distance may be thought of as a uniform (local) plane wave being intercepted by the antenna.



# Receiving mode

- The use of the antenna in the receiving mode is shown in Figure.
- The incident wave impinges upon the antenna, and it induces a voltage V<sub>0</sub> at the input terminals.



### **Rx Antenna parameters**

- Rx effective length
- Equivalent circuit of the rx antenna
- Effective Area



### **Rx Antenna parameters**

- Rx effective length
- Equivalent circuit of the rx antenna
- Effective Area





 $V_0$  is the voltage induced at the antenna terminals, which are assumed open-circuited

#### ..... MEMO

#### Radiation pattern of the electrical elementary dipole

 $\mathbf{l}(\vartheta, \varphi) = \varDelta z \sin \vartheta \hat{i}_{\vartheta}$ 





Stefand

Interestingly, this result can be extended to <u>ALL</u> the antennas by applying the RECIPROCITY THEOREM.

It can be shown that for an elementary electrical dipole or for a small loop antenna, the following property is valid:  $|V_0| = |\mathbf{E_i} \cdot \mathbf{l}|$ 

I is the tx antenna effective length

 $E_i$  is the incident, locally plane, field

 $V_0$  is the voltage induced at the antenna terminals, which are assumed open-circuited

$$\left|V_{0}\right| = \left|\mathbf{E}_{\mathbf{i}} \cdot \mathbf{l}\right|$$

Where

 $E_i$  is the incident, locally plane, field

 $V_0$  is the voltage induced at the antenna terminals, which are assumed open-circuited

 $\mathbf{l}(\vartheta, \varphi) = l_{\vartheta}(\vartheta, \varphi)\hat{i}_{\vartheta} + l_{\varphi}(\vartheta, \varphi)\hat{i}_{\varphi} \quad \text{can referred to as } \underline{\mathbf{receiving effective}}$ **length** of the antenna (and not only transmitting effective length)

Note that this means that the behavior of an antenna when transmitting and when receiving are related.

#### three examples from the real life

















#### ZDADJ800-13-90 Patterns

### **Rx Antenna parameters**

- Rx effective length
- Equivalent circuit of the rx antenna
- Effective Area



• The incident electric field sets up currents on the antenna. Such currents may be represented by a Thevenin-equivalent generator, which delivers power to any connected receiving load impedance.



#### ....MEMO..

#### Equivalent circuit of the Tx antenna





### **Rx Antenna parameters**

- Rx effective length
- Equivalent circuit of the rx antenna
- Effective Area







Stefano Perna – Università Parthenope – Ingegneria Informatica, Biomedica e delle TLC – Corso di Campi Elettromagnetici – 24 Maggio 2018

1) Polarization matching

 $|\boldsymbol{E}_i \cdot \mathbf{l}| = |\boldsymbol{E}_i||\mathbf{l}|$ 



$$P_{L} = \frac{1}{2} \frac{R_{L}}{\left|Z_{in} + Z_{L}\right|^{2}} \left|\boldsymbol{E}_{i} \cdot \mathbf{l}\right|^{2}$$

1) Polarization matching  $|\boldsymbol{E}_i \cdot \mathbf{l}| = |\boldsymbol{E}_i||\mathbf{l}|$ 2) Power matching  $Z_{L} = Z_{in}^{*} \Longrightarrow \begin{cases} Z_{in} = R_{in} + j X_{in} \\ Z_{l} = R_{in} - j X_{in} \end{cases}$ ۷<sub>0</sub> Z  $\Rightarrow \frac{R_L}{\left|Z_{in} + Z_I\right|^2} = \frac{R_{in}}{\left(2R_{in}\right)^2} = \frac{1}{4R_{in}}$ B **Rx** antenna Load  $P_{L} = \frac{1}{2} \frac{R_{L}}{\left|Z_{in} + Z_{i}\right|^{2}} \left|\boldsymbol{E}_{i} \cdot \boldsymbol{I}\right|^{2}$ 26



 $1 |\mathbf{F}|^2 [\mathcal{E} |\mathbf{I}(\mathbf{a}, \mathbf{a})|^2]$ 

1) Polarization matching

 $|\boldsymbol{E}_i \cdot \mathbf{l}| = |\boldsymbol{E}_i||\mathbf{l}|$ 

2) Power matching

$$Z_{L} = Z_{in}^{*} \Rightarrow \begin{cases} Z_{in} = R_{in} + j X_{in} \\ Z_{L} = R_{in} - j X_{in} \\ \Rightarrow \frac{R_{L}}{|Z_{in} + Z_{L}|^{2}} = \frac{R_{in}}{(2R_{in})^{2}} = \frac{1}{4R_{in}} \end{cases}$$

$$P_{Lmax} = \frac{1}{2} \frac{|\mathbf{E}_{i}|}{\zeta} \begin{bmatrix} \boldsymbol{\zeta} |\mathbf{I}(\vartheta, \varphi) \\ 4R_{in} \end{bmatrix}$$
Effective Area  

$$A_{eff}(\vartheta, \varphi)$$

$$P_{L} = \frac{1}{2} \frac{R_{L}}{|Z_{in} + Z_{L}|^{2}} |\mathbf{E}_{i} \cdot \mathbf{I}|^{2} \Rightarrow P_{Lmax} = \frac{1}{2} \frac{1}{4R_{in}} |\mathbf{E}_{i}|^{2} |\mathbf{I}|^{2} = \frac{\zeta}{\zeta} \frac{1}{2} \frac{1}{4R_{in}} |\mathbf{E}_{i}|^{2} |\mathbf{I}|^{2}$$

# Effective area

- In general, the aperture of an antenna is not directly related to its physical size.
- However some types of antennas, for example parabolic dishes and horns, have a physical aperture (opening) which collects the radio waves.
- In these aperture antennas, the effective aperture A must always be less than the area of the antenna's physical aperture A<sub>phys</sub>.
- The ratio of  $A_{eff}/A_{phys}$  vary from 0.35 to 0.70 but can range up to 0.90.

$$\mathbf{Gain} \\ G(\vartheta, \varphi) = \frac{\frac{1}{2} \frac{|\mathbf{E}|^2}{\zeta}}{\frac{1}{4\pi r^2} P_{in}} \\ \mathbf{Effective Area} \\ A_{eff} (\vartheta, \varphi) = \frac{\zeta |\mathbf{I}(\vartheta, \varphi)|^2}{4R_{in}} \\ \mathbf{E}(r, \vartheta, \varphi) = \frac{j\zeta I}{2\lambda} \frac{e^{-j\beta r}}{r} \mathbf{I}(\vartheta, \varphi) \\ \mathbf{E}(r, \vartheta, \varphi) = \frac{j\zeta I}{2\lambda} \frac{e^{-j\beta r}}{r} \mathbf{I}(\vartheta, \varphi) \\ G(\vartheta, \varphi) = \frac{4\pi r^2}{2\zeta} \frac{|\mathbf{E}|^2}{2\zeta} = \frac{4\pi r^2}{2\zeta} \left(\frac{\zeta^2 |I|^2}{4\lambda^2} \frac{|\mathbf{I}(\vartheta, \varphi)|^2}{r^2}\right) \frac{2}{R_{in}|I|^2} = \frac{4\pi}{\lambda^2} \left[\frac{\zeta |\mathbf{I}(\vartheta, \varphi)|^2}{4R_{in}}\right] \\ G(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} \left[\frac{\zeta (\vartheta, \varphi)}{4R_{in}}\right] \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} \left[\frac{\zeta (\vartheta, \varphi)}{4R_{in}}\right] \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi) \\ \mathbf{G}(\vartheta, \varphi) = \frac{4\pi r^2}{\lambda^2} A_{eff} (\vartheta, \varphi)$$













Stefano Perna – Università Parthenope – Ingegneria Informatica, Biomedica e delle TLC – Corso di Campi Elettromagnetici – 24 Maggio 2018

### **Rx** Antenna parameters

- Rx effective length
- Equivalent circuit of the rx antenna
- Effective Area



#### Equivalent circuit of the Rx antenna



#### **Effective Area**

1) Polarization matching

 $|\boldsymbol{E}_i \cdot \mathbf{l}| = |\boldsymbol{E}_i||\mathbf{l}|$ 

2) Power matching



 $1 |\mathbf{F}|^2 [\mathcal{E} |\mathbf{I}(\mathbf{a}, \mathbf{a})|^2]$ 

1) Polarization matching

 $|\boldsymbol{E}_i \cdot \mathbf{l}| = |\boldsymbol{E}_i||\mathbf{l}|$ 

2) Power matching

$$Z_{L} = Z_{in}^{*} \Rightarrow \begin{cases} Z_{in} = R_{in} + j X_{in} \\ Z_{L} = R_{in} - j X_{in} \end{cases}$$

$$\Rightarrow \frac{R_{L}}{|Z_{in} + Z_{L}|^{2}} = \frac{R_{in}}{(2R_{in})^{2}} = \frac{1}{4R_{in}}$$

$$P_{Lmax} = \frac{1}{2} \frac{|\mathbf{E}_{i}|}{\zeta} \left[ \frac{|\mathbf{S}|\mathbf{I}(\vartheta, \varphi)|}{4R_{in}} \right]$$

$$Effective Area \\ A_{eff}(\vartheta, \varphi)$$

$$P_{L} = \frac{1}{2} \frac{R_{L}}{|Z_{in} + Z_{L}|^{2}} |\mathbf{E}_{i} \cdot \mathbf{I}|^{2} \Rightarrow P_{Lmax} = \frac{1}{2} \frac{1}{4R_{in}} |\mathbf{E}_{i}|^{2} |\mathbf{I}|^{2} = \frac{\zeta}{\zeta} \frac{1}{2} \frac{1}{4R_{in}} |\mathbf{E}_{i}|^{2} |\mathbf{I}|^{2}$$