Probabilità elementare

Corso di "Probabilità e Fenomeni Aleatori" Laurea in Ingegneria Informatica, Biomedica e delle Telecomunicazioni

Donatella Darsena

Università di Napoli Parthenope

darsena@uniparthenope.it

a.a. 2020-21

Contenuti

- Introduzione al corso
- Introduzione alla probabilità
- Definizioni preliminari
- Assiomi di Kolmogorov
- Proprietà della probabilità
- Esempi di spazi di probabilità

Introduzione al corso

- Riferimenti docente:
 - Donatella Darsena, DI
 - Quinto piano, stanza 504
 - Tel: 081-5476741, E-mail: darsena@uniparthenope.it
 - Sito web: http://edi.uniparthenope.it/course/view.php?id=36
 - Orario di ricevimento: lunedì 15:00-17:00 (tramite piattaforma Teams)
 - Eventuali appuntamenti fuori orario: da concordare via e-mail
- Libri di testo:
 - G. Gelli, "Probabilità e informazione" disponibile sul sito web
 - Athanasios Papoulis, "Probability, Random Variables, and Stochastic Processes", ed. McGraw-Hill, third edition (in inglese).
 - Alberto Leon-Garcia, "Probability and Random Processes for Electrical Engineering", ed. Addison-Wesley, second edition (in inglese).

Modalità esame:

- Scritto + orale
- Non sono previste prove intracorso

Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)
 - elaborazione/trasmissione informazione

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)
 - elaborazione/trasmissione informazione
- Conoscenze matematiche richieste:

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)
 - elaborazione/trasmissione informazione
- Conoscenze matematiche richieste:
 - teoria degli insiemi ⇒ vedi richiami sul libro

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)
 - elaborazione/trasmissione informazione
- Conoscenze matematiche richieste:
 - teoria degli insiemi ⇒ vedi richiami sul libro
 - operazioni fondamentali: unione (\cup), intersezione (\cap), complemento ($\overline{}$)

- Probabilità: strumento matematico utile per lo studio dei fenomeni aleatori
 esperimenti il cui esito non è prevedibile, ma che presentano qualche forma di
 regolarità:
 - giochi d'azzardo (lanci monete/dadi, alcuni giochi di carte, roulette, etc.)
 - fenomeni fisici (moto delle particelle in un gas)
 - teoria delle code (arrivo clienti ad uno sportello, arrivo pacchetti ad un router, etc.)
 - transazioni finanziarie (prezzo azioni)
 - elaborazione/trasmissione informazione
- Conoscenze matematiche richieste:
 - teoria degli insiemi ⇒ vedi richiami sul libro
 - operazioni fondamentali: unione (\cup), intersezione (\cap), complemento ($\overline{}$)
 - integrazione/derivazione di funzioni di una/due variabili

• Esperimento aleatorio: procedura con un *ben definito* insieme di risultati, il cui esito non è prevedibile a priori:

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - ullet indicheremo con ω il *risultato* di un esperimento aleatorio

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - ullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - ullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - \bullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - ullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le 12:00 $\Rightarrow \Omega = [0, 10800]$ (in secondi)

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - \bullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le $12:00 \Rightarrow \Omega = [0, 10800]$ (in secondi)
- **Evento:** un qualunque sottoinsieme A di $\Omega \Rightarrow A \subseteq \Omega$
 - es. lancio di una moneta ⇒ enumerare gli eventi (facile)

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - \bullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le 12:00 $\Rightarrow \Omega = [0, 10800]$ (in secondi)
- **Evento**: un qualunque sottoinsieme A di $\Omega \Rightarrow A \subseteq \Omega$
 - es. lancio di una moneta ⇒ enumerare gli eventi (facile)
 - es. lancio di un dado ⇒ enumerare gli eventi (medio)

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - \bullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le $12:00 \Rightarrow \Omega = [0, 10800]$ (in secondi)
- **Evento:** un qualunque sottoinsieme A di $\Omega \Rightarrow A \subseteq \Omega$
 - es. lancio di una moneta ⇒ enumerare gli eventi (facile)
 - es. lancio di un dado ⇒ enumerare gli eventi (medio)
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le 12:00 ⇒ enumerare gli eventi (più difficile)

- Esperimento aleatorio: procedura con un ben definito insieme di risultati, il cui esito non è prevedibile a priori:
 - es. lancio moneta/dado, estrazione di una carta da un mazzo, estrazioni del lotto, roulette etc.
 - \bullet indicheremo con ω il *risultato* di un esperimento aleatorio
- Spazio campione: insieme Ω contenente tutti i possibili risultati di un esperimento aleatorio:
 - es. lancio di una moneta $\Rightarrow \Omega = \{T, C\}$
 - es. lancio di un dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le $12:00 \Rightarrow \Omega = [0, 10800]$ (in secondi)
- **Evento:** un qualunque sottoinsieme A di $\Omega \Rightarrow A \subseteq \Omega$
 - es. lancio di una moneta ⇒ enumerare gli eventi (facile)
 - es. lancio di un dado ⇒ enumerare gli eventi (medio)
 - es. arrivo di un cliente ad uno sportello postale tra le 9:00 e le 12:00 ⇒ enumerare gli eventi (più difficile)

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - ullet si verifica l'evento $A \longleftrightarrow \omega \in A$

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \longleftrightarrow \omega \in A$
 - non si verifica l'evento $A \longleftrightarrow \omega \not\in A \longleftrightarrow \omega \in \overline{A}$

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \iff \omega \in A$
 - non si verifica l'evento $A \longleftrightarrow \omega \not\in A \longleftrightarrow \omega \in \overline{A}$
 - si verifica A o $B \iff \omega \in A \cup B \iff \omega \in A$ o $\omega \in B$

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \iff \omega \in A$
 - non si verifica l'evento $A \iff \omega \not\in A \iff \omega \in \overline{A}$
 - si verifica A o $B \iff \omega \in A \cup B \iff \omega \in A$ o $\omega \in B$
 - si verifica A e $B \iff \omega \in A \cap B \iff \omega \in A$ e $\omega \in B$

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \iff \omega \in A$
 - non si verifica l'evento $A \iff \omega \not\in A \iff \omega \in \overline{A}$
 - si verifica $A \circ B \iff \omega \in A \cup B \iff \omega \in A \circ \omega \in B$
 - si verifica $A \in B \iff \omega \in A \cap B \iff \omega \in A \in \omega \in B$
- Eventi particolari:
 - evento **certo** $A = \Omega \Rightarrow$ si verifica sempre

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \iff \omega \in A$
 - non si verifica l'evento $A \iff \omega \notin A \iff \omega \in \overline{A}$
 - si verifica $A \circ B \iff \omega \in A \cup B \iff \omega \in A \circ \omega \in B$
 - si verifica $A \in B \iff \omega \in A \cap B \iff \omega \in A \in \omega \in B$
- Eventi particolari:
 - evento **certo** $A = \Omega \Rightarrow$ si verifica sempre
 - evento **impossibile** $A = \emptyset \Rightarrow$ non si verifica mai

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \iff \omega \in A$
 - non si verifica l'evento $A \iff \omega \notin A \iff \omega \in \overline{A}$
 - si verifica A o $B \iff \omega \in A \cup B \iff \omega \in A$ o $\omega \in B$
 - si verifica $A \in B \iff \omega \in A \cap B \iff \omega \in A \in \omega \in B$
- Eventi particolari:
 - evento **certo** $A = \Omega \Rightarrow$ si verifica sempre
 - evento **impossibile** $A = \emptyset \Rightarrow$ non si verifica mai
 - evento elementare $A = \{\omega\} \Rightarrow$ costituito da un singolo risultato

- ullet Prova: singola ripetizione di un esperimento \Rightarrow restituisce un risultato $\omega \in \Omega$
- Terminologia:
 - si verifica l'evento $A \longleftrightarrow \omega \in A$
 - non si verifica l'evento $A \iff \omega \notin A \iff \omega \in \overline{A}$
 - si verifica $A \circ B \iff \omega \in A \cup B \iff \omega \in A \circ \omega \in B$
 - si verifica $A \in B \iff \omega \in A \cap B \iff \omega \in A \in \omega \in B$
- Eventi particolari:
 - evento **certo** $A = \Omega \Rightarrow$ si verifica sempre
 - evento **impossibile** $A = \emptyset \Rightarrow$ non si verifica mai
 - evento elementare $A = \{\omega\} \Rightarrow$ costituito da un singolo risultato
 - eventi **mutuamente esclusivi** A e $B \iff A \cap B = \emptyset \iff$ non possono verificarsi contemporaneamente

• Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - *C* = {minore di 2}

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di } 2\} \Rightarrow \text{non si verifica}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - A e B

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow \text{si verifica}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow si \ verifica$
 - A o C

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di } 2\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow si \ verifica$
 - $A \circ C \Rightarrow si \text{ verifica}$

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow \text{si verifica}$
 - $A \circ C \Rightarrow si \text{ verifica}$
 - A e C

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow \text{si verifica}$
 - $A \circ C \Rightarrow si \text{ verifica}$
 - $A \in C \Rightarrow$ non si verifica

- Esempio 1.4: lancio di un dado, il risultato di una prova è $\omega=$ 4, stabilire se si verificano i seguenti eventi:
 - $A = \{pari\} \Rightarrow si \ verifica$
 - $B = \{\text{maggiore o uguale a 3}\} \Rightarrow \text{si verifica}$
 - $C = \{\text{minore di 2}\} \Rightarrow \text{non si verifica}$
 - $A \in B \Rightarrow \text{si verifica}$
 - $A \circ C \Rightarrow si \text{ verifica}$
 - $A \in C \Rightarrow$ non si verifica

 \bullet Spazio degli eventi $\mathcal{S} \Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}\rightarrow P(A)\in[0,1]$$

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}
ightarrow P(A)\in[0,1]$$

• P(A) misura il "grado di incertezza" associato al verificarsi dell'evento

- Spazio degli eventi $\mathcal{S} \Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}
ightarrow P(A)\in[0,1]$$

- \bullet P(A) misura il "grado di incertezza" associato al verificarsi dell'evento
- si tratta di una definizione "tautologica"?

- Spazio degli eventi $\mathcal{S} \Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}
ightarrow P(A)\in[0,1]$$

- \bullet P(A) misura il "grado di incertezza" associato al verificarsi dell'evento
- si tratta di una definizione "tautologica"?
- ullet Dato un esperimento, è semplice definire Ω , gli eventi A e lo spazio degli eventi ${\cal S}$

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}
ightarrow P(A)\in[0,1]$$

- ullet P(A) misura il "grado di incertezza" associato al verificarsi dell'evento
- si tratta di una definizione "tautologica"?
- ullet Dato un esperimento, è semplice definire Ω , gli eventi A e lo spazio degli eventi ${\mathcal S}$
- Problema: come assegnare la legge di probabilità?

- Spazio degli eventi $\mathcal{S} \Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}\rightarrow P(A)\in[0,1]$$

- \bullet P(A) misura il "grado di incertezza" associato al verificarsi dell'evento
- si tratta di una definizione "tautologica"?
- ullet Dato un esperimento, è semplice definire Ω , gli eventi A e lo spazio degli eventi $\mathcal S$
- Problema: come assegnare la legge di probabilità?
- Esempio 1.5: lancio della moneta

- ullet Spazio degli eventi $\mathcal{S}\Rightarrow$ una collezione di eventi contenente tutti gli eventi di interesse
 - possibile in molti casi considerare tutti i sottoinsiemi di A (compresi Ω ed \emptyset)
- **Probabilità:** legge che ad ogni evento (elemento di \mathcal{S}) associa un valore $P(A) \in [0,1]$

$$P:A\in\mathcal{S}\rightarrow P(A)\in[0,1]$$

- \bullet P(A) misura il "grado di incertezza" associato al verificarsi dell'evento
- si tratta di una definizione "tautologica"?
- ullet Dato un esperimento, è semplice definire Ω , gli eventi A e lo spazio degli eventi $\mathcal S$
- Problema: come assegnare la legge di probabilità?
- Esempio 1.5: lancio della moneta
 - difficile generalizzare al lancio di un dado (troppi eventi)

• Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista
- L'approccio adoperato al giorno d'oggi è quello assiomatico (Kolmogorov, 1933) ⇒

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista
- L'approccio adoperato al giorno d'oggi è quello **assiomatico** (Kolmogorov, 1933) \Rightarrow una legge di probabilità P(A) deve soddisfare a tre *assiomi* fondamentali

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista
- L'approccio adoperato al giorno d'oggi è quello assiomatico (Kolmogorov, 1933) \Rightarrow una legge di probabilità P(A) deve soddisfare a tre assiomi fondamentali
 - assioma = verità non dimostrabile

Assiomi di Kolmogorov

I. $P(A) \ge 0$ (non negatività)

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista
- L'approccio adoperato al giorno d'oggi è quello assiomatico (Kolmogorov, 1933) \Rightarrow una legge di probabilità P(A) deve soddisfare a tre assiomi fondamentali
 - assioma = verità non dimostrabile

- I. $P(A) \ge 0$ (non negatività)
- II. $P(\Omega) = 1$ (normalizzazione)

- Nel corso del tempo, i matematici hanno seguito varie strade per definire in maniera rigorosa il concetto di probabilità:
 - approccio frequentista, classico, soggettivista
- L'approccio adoperato al giorno d'oggi è quello assiomatico (Kolmogorov, 1933) \Rightarrow una legge di probabilità P(A) deve soddisfare a tre assiomi fondamentali
 - assioma = verità non dimostrabile

Assiomi di Kolmogorov

- I. $P(A) \ge 0$ (non negatività)
- II. $P(\Omega) = 1$ (normalizzazione)
- III. $\{A_n\}_{n=1}^{\infty}$ mutuamente esclusivi $(A_i \cap A_j = \emptyset, \forall i \neq j)$

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$
 (numerabile additività)

 Ogni risultato della teoria della probabilità si ricava in maniera deduttiva a partire da tali assiomi

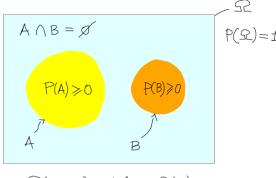
ullet Una funzione f(A) che soddisfa gli assiomi di Kolmogorov è una ullet una ullet

- ullet Una funzione f(A) che soddisfa gli assiomi di Kolmogorov è una **misura**
 - lunghezza, area, volume

- ullet Una funzione f(A) che soddisfa gli assiomi di Kolmogorov è una **misura**
 - lunghezza, area, volume
 - misura normalizzata (per il secondo assioma)

- Una funzione f(A) che soddisfa gli assiomi di Kolmogorov è una **misura**
 - lunghezza, area, volume
 - misura normalizzata (per il secondo assioma)
- Molte relazioni della teoria della probabilità possono essere verificate sui diagrammi di Venn identificando P(A) come l'area dell'insieme A

- Una funzione f(A) che soddisfa gli assiomi di Kolmogorov è una **misura**
 - lunghezza, area, volume
 - misura normalizzata (per il secondo assioma)
- Molte relazioni della teoria della probabilità possono essere verificate sui diagrammi di Venn identificando P(A) come l'area dell'insieme A



$$P(A \cup B) = P(A) + P(B)$$

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

1.
$$P(\emptyset) = 0$$

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

- 1. $P(\emptyset) = 0$
- 2. se $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (finita additività)

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

- 1. $P(\emptyset) = 0$
- 2. se $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (finita additività)
- 3. $P(\overline{A}) = 1 P(A)$

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

- 1. $P(\emptyset) = 0$
- 2. se $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (finita additività)
- 3. $P(\overline{A}) = 1 P(A)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B) \Rightarrow P(A \cup B) \le P(A) + P(B)$ (disuguaglianza di Boole)

Proprietà elementari

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

Proprietà elementari della probabilità

- 1. $P(\emptyset) = 0$
- 2. se $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (finita additività)
- 3. $P(\overline{A}) = 1 P(A)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B) \Rightarrow P(A \cup B) \le P(A) + P(B)$ (disuguaglianza di Boole)
- 5. $B \subseteq A \Rightarrow P(B) \leq P(A)$

Proprietà elementari

 Le seguenti proprietà si provano facilmente utilizzando gli assiomi di Kolmogorov oppure aiutandosi con l'interpretazione grafica

Proprietà elementari della probabilità

- 1. $P(\emptyset) = 0$
- 2. se $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (finita additività)
- 3. $P(\overline{A}) = 1 P(A)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B) \Rightarrow P(A \cup B) \le P(A) + P(B)$ (disuguaglianza di Boole)
- 5. $B \subseteq A \Rightarrow P(B) \leq P(A)$
- 6. $P(B) \leq 1$

• Esempio: lancio di un dado

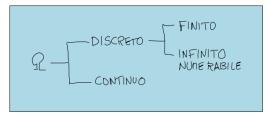
- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata
- La costruzione di una legge di probabilità dipende dal tipo di spazio campione Ω :

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata
- ullet La costruzione di una legge di probabilità dipende dal tipo di spazio campione Ω :



- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata
- La costruzione di una legge di probabilità dipende dal tipo di spazio campione Ω :

• es. $\Omega = \{T, C\}$ è un insieme discreto (finito)

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata
- La costruzione di una legge di probabilità dipende dal tipo di spazio campione Ω :

- es. $\Omega = \{T, C\}$ è un insieme discreto (finito)
- \bullet es. $\Omega=\mathbb{N}=\{1,2,\ldots,\}$ (numeri naturali) è un insieme discreto (infinito numerabile)

- Esempio: lancio di un dado
 - sufficiente assegnare le probabilità solo agli eventi elementari
 - le probabilità di eventi non elementari si ottengono applicando il terzo assioma
- Limitazioni dell'approccio assiomatico: gli assiomi di Kolmogorov non identificano univocamente la legge di probabilità
 - es. moneta bilanciata oppure truccata
- ullet La costruzione di una legge di probabilità dipende dal tipo di spazio campione Ω :

- es. $\Omega = \{T, C\}$ è un insieme discreto (finito)
- es. $\Omega = \mathbb{N} = \{1, 2, \dots, \}$ (numeri naturali) è un insieme discreto (infinito numerabile)
- es. $\Omega=\mathbb{R},~\Omega=[0,1],~\Omega=[0,+\infty[$ sono insiemi continui

• Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_\Delta} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)
- **Risultato:** in uno spazio discreto per specificare completamente una legge di probabilità è sufficiente assegnare le probabilità $P(\{\omega_i\})$ degli eventi elementari:

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)
- Risultato: in uno spazio discreto per specificare completamente una legge di probabilità è sufficiente assegnare le probabilità $P(\{\omega_i\})$ degli eventi elementari:
 - possibile scrivere $P(\omega_i)$ per semplicità

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)
- **Risultato:** in uno spazio discreto per specificare completamente una legge di probabilità è sufficiente assegnare le probabilità $P(\{\omega_i\})$ degli eventi elementari:
 - possibile scrivere $P(\omega_i)$ per semplicità
 - la scelta delle probabilità degli eventi elementari non è univoca

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)
- Risultato: in uno spazio discreto per specificare completamente una legge di probabilità è sufficiente assegnare le probabilità $P(\{\omega_i\})$ degli eventi elementari:
 - possibile scrivere $P(\omega_i)$ per semplicità
 - la scelta delle probabilità degli eventi elementari non è univoca
 - es. $\Omega=\{{\sf T},{\sf C}\}$, due scelte possibili (tra ∞) sono P(T)=P(C)=1/2 oppure P(T)=1/3 e P(C)=2/3

- Ω insieme discreto (finito/infinito) $\Rightarrow \Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$
- Qualunque evento $A \subseteq \Omega$ esprimibile come unione finita o numerabile di eventi elementari $\{\omega_i\} \Rightarrow A = \bigcup_{i \in I_A} \{\omega_i\}$
 - IA insieme degli indici degli elementi di A
 - es. lancio di un dado \Rightarrow $A = \{pari\} = \{2\} \cup \{4\} \cup \{6\}$
- $\{\omega_i\} \cap \{\omega_j\} = \emptyset$ per $i \neq j$ (eventi elementari distinti sono mutuamente esclusivi) $\Rightarrow P(A) = \sum_{i \in I_A} P(\{\omega_i\})$ (per il terzo assioma)
- **Risultato:** in uno spazio discreto per specificare completamente una legge di probabilità è sufficiente assegnare le probabilità $P(\{\omega_i\})$ degli eventi elementari:
 - possibile scrivere $P(\omega_i)$ per semplicità
 - la scelta delle probabilità degli eventi elementari non è univoca
 - es. $\Omega = \{T, C\}$, due scelte possibili (tra ∞) sono P(T) = P(C) = 1/2 oppure P(T) = 1/3 e P(C) = 2/3
 - ullet qualunque scelta deve rispettare il secondo assioma \Rightarrow somma delle probabilità degli eventi elementari pari ad 1

• Ω finito con $N=\operatorname{card}(\Omega)$ elementi \Rightarrow possibile scegliere le probabilità degli eventi elementari uguali tra loro $\Rightarrow P(\omega_i)=p\in\mathbb{R}$ (costante) \Rightarrow equiprobabilità

- Ω finito con $N=\operatorname{card}(\Omega)$ elementi \Rightarrow possibile scegliere le probabilità degli eventi elementari uguali tra loro $\Rightarrow P(\omega_i)=p\in\mathbb{R}$ (costante) \Rightarrow equiprobabilità
- Applicando l'assioma di normalizzazione si ha necessariamente

$$\sum_{i=1}^{N} P(\omega_i) = 1 \implies Np = 1 \implies p = \frac{1}{N} = \frac{1}{\mathsf{card}(\Omega)}$$

- Ω finito con $N=\operatorname{card}(\Omega)$ elementi \Rightarrow possibile scegliere le probabilità degli eventi elementari uguali tra loro $\Rightarrow P(\omega_i)=p\in\mathbb{R}$ (costante) \Rightarrow equiprobabilità
- Applicando l'assioma di normalizzazione si ha necessariamente

$$\sum_{i=1}^N P(\omega_i) = 1 \quad \Longrightarrow \quad N \, p = 1 \quad \Longrightarrow \quad p = rac{1}{N} = rac{1}{\mathsf{card}(\Omega)}$$

• Per un generico evento A si ha allora:

$$P(A) = \sum_{i \in I_A} P(\omega_i) = \operatorname{card}(A) \times p = \implies P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$

- Ω finito con $N=\operatorname{card}(\Omega)$ elementi \Rightarrow possibile scegliere le probabilità degli eventi elementari uguali tra loro $\Rightarrow P(\omega_i)=p\in\mathbb{R}$ (costante) \Rightarrow equiprobabilità
- Applicando l'assioma di normalizzazione si ha necessariamente

$$\sum_{i=1}^N P(\omega_i) = 1 \quad \Longrightarrow \quad N \, p = 1 \quad \Longrightarrow \quad p = rac{1}{N} = rac{1}{\mathsf{card}(\Omega)}$$

• Per un generico evento A si ha allora:

$$P(A) = \sum_{i \in I_A} P(\omega_i) = \operatorname{card}(A) \times p = \implies P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$

- calcolo delle probabilità si riduce ad un problema combinatorio o di "conteggio"
- approccio proposto da Laplace (anche chiamato "approccio classico") ⇒ probabilità come "rapporto tra casi favorevoli e casi totali"

- Ω finito con $N=\operatorname{card}(\Omega)$ elementi \Rightarrow possibile scegliere le probabilità degli eventi elementari uguali tra loro $\Rightarrow P(\omega_i)=p\in\mathbb{R}$ (costante) \Rightarrow equiprobabilità
- Applicando l'assioma di normalizzazione si ha necessariamente

$$\sum_{i=1}^N P(\omega_i) = 1 \quad \Longrightarrow \quad N \, p = 1 \quad \Longrightarrow \quad p = rac{1}{N} = rac{1}{\mathsf{card}(\Omega)}$$

• Per un generico evento A si ha allora:

$$P(A) = \sum_{i \in I_A} P(\omega_i) = \operatorname{card}(A) \times p = \implies P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$

- calcolo delle probabilità si riduce ad un problema combinatorio o di "conteggio"
- approccio proposto da Laplace (anche chiamato "approccio classico") ⇒ probabilità come "rapporto tra casi favorevoli e casi totali"
- ullet soddisfacente per problemi con Ω finito ed eventi elementari equiprobabili
- se non sono equiprobabili $\Rightarrow P(A) \neq \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ (limiti dell'approccio di Laplace)

• Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)

- Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)
 - in questo caso $\sum_{n=1}^{\infty} P(\omega_i) = \sum_{n=1}^{\infty} p = +\infty$ che <u>non</u> soddisfa il secondo assioma

- Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)
 - ullet in questo caso $\sum_{n=1}^{\infty}P(\omega_i)=\sum_{n=1}^{\infty}p=+\infty$ che $\underline{\mathrm{non}}$ soddisfa il secondo assioma
- In uno spazio discreto con infiniti elementi ⇒ gli eventi elementari sono necessariamente non equiprobabili

- Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)
 - ullet in questo caso $\sum_{n=1}^{\infty}P(\omega_i)=\sum_{n=1}^{\infty}p=+\infty$ che $\underline{\mathrm{non}}$ soddisfa il secondo assioma
- In uno spazio discreto con infiniti elementi ⇒ gli eventi elementari sono necessariamente non equiprobabili
- Esempio: pensa un numero intero a caso tra 1 e 10
 - $\Omega = \{1, 2, \dots, 10\}$
 - ullet possibile scegliere una legge equiprobabile con p=1/10

- Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)
 - in questo caso $\sum_{n=1}^{\infty}P(\omega_i)=\sum_{n=1}^{\infty}p=+\infty$ che <u>non</u> soddisfa il secondo assioma
- In uno spazio discreto con infiniti elementi ⇒ gli eventi elementari sono necessariamente non equiprobabili
- Esempio: pensa un numero intero a caso tra 1 e 10
 - $\Omega = \{1, 2, \dots, 10\}$
 - possibile scegliere una legge equiprobabile con p=1/10
- Esempio: pensa un numero intero a caso tra tutti i numeri naturali
 - $\Omega = \mathbb{N} = \{1, 2, \dots, \}$
 - impossibile scegliere una legge equiprobabile

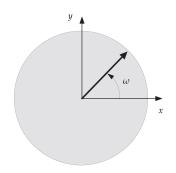
- Ω insieme discreto con infiniti elementi \Rightarrow non è possibile scegliere $P(\omega_i) = p$ (costante)
 - in questo caso $\sum_{n=1}^{\infty}P(\omega_i)=\sum_{n=1}^{\infty}p=+\infty$ che <u>non</u> soddisfa il secondo assioma
- In uno spazio discreto con infiniti elementi ⇒ gli eventi elementari sono necessariamente non equiprobabili
- Esempio: pensa un numero intero a caso tra 1 e 10
 - $\Omega = \{1, 2, \dots, 10\}$
 - ullet possibile scegliere una legge equiprobabile con p=1/10
- Esempio: pensa un numero intero a caso tra tutti i numeri naturali
 - $\Omega = \mathbb{N} = \{1, 2, \dots, \}$
 - impossibile scegliere una legge equiprobabile
 - una possibile legge è $P(\omega_i) = p_i = \alpha p^i$ con 0 (legge esponenziale)
 - ullet determinare il valore di lpha

Spazi continui

- Ω insieme continuo \Rightarrow cardinalità infinita non numerabile
 - es. $\Omega=\mathbb{R}$, $\Omega=[0,1]$, $\Omega=[0,+\infty[$

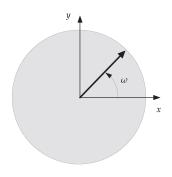
Spazi continui

- Ω insieme continuo \Rightarrow cardinalità infinita non numerabile
 - es. $\Omega = \mathbb{R}$, $\Omega = [0, 1]$, $\Omega = [0, +\infty[$
- Esempio 1.13: lancetta ruotante
 - $\Omega = [0, 2\pi[$
 - $A_1 = [0, \pi/2]$ (si ferma nel primo quadrante)
 - $A_2 = [\pi, 2\pi]$ (si ferma nel terzo o nel quarto quadrante)
 - $A_3 = \{\pi/4\}$ (si ferma formando un angolo di 45^o rispetto all'asse x



Spazi continui

- Ω insieme continuo \Rightarrow cardinalità infinita non numerabile
 - es. $\Omega = \mathbb{R}$, $\Omega = [0, 1]$, $\Omega = [0, +\infty[$
- Esempio 1.13: lancetta ruotante
 - $\Omega = [0, 2\pi[$
 - $A_1 = [0,\pi/2]$ (si ferma nel primo quadrante)
 - $A_2 = [\pi, 2\pi]$ (si ferma nel terzo o nel quarto quadrante)
 - $A_3 = \{\pi/4\}$ (si ferma formando un angolo di 45° rispetto all'asse x
- Gli eventi (sottoinsiemi di Ω) non sono numerabili ⇒ non è possibile applicare il terzo assioma a partire dalle probabilità degli eventi elementari



Spazi continui: legge di probabilità

• Se $\Omega \subseteq \mathbb{R}$, la legge di probabilità si assegna definendo una funzione f(x) su Ω che soddisfa due proprietà:

$$f(x) \ge 0$$
 $\int_{\Omega} f(x) dx = 1$

Spazi continui: legge di probabilità

• Se $\Omega \subseteq \mathbb{R}$, la legge di probabilità si assegna definendo una funzione f(x) su Ω che soddisfa due proprietà:

$$f(x) \ge 0$$
 $\int_{\Omega} f(x) dx = 1$

• Probabilità di un evento $\Rightarrow P(A) \stackrel{\triangle}{=} \int_A f(x) dx$

$$f(x) \ge 0$$
 $\int_{\Omega} f(x) dx = 1$

- Probabilità di un evento $\Rightarrow P(A) \stackrel{\triangle}{=} \int_A f(x) dx$
 - si può verificare che tale legge soddisfa gli assiomi di Kolmogorov

$$f(x) \ge 0$$
 $\int_{\Omega} f(x) dx = 1$

- Probabilità di un evento $\Rightarrow P(A) \stackrel{\triangle}{=} \int_A f(x) dx$
 - si può verificare che tale legge soddisfa gli assiomi di Kolmogorov
 - facilmente generalizzabile al caso di $\Omega \subseteq \mathbb{R}^2, \mathbb{R}^3$ etc.

$$f(x) \ge 0$$
 $\int_{\Omega} f(x) dx = 1$

- Probabilità di un evento $\Rightarrow P(A) \stackrel{\triangle}{=} \int_A f(x) dx$
 - si può verificare che tale legge soddisfa gli assiomi di Kolmogorov
 - facilmente generalizzabile al caso di $\Omega \subseteq \mathbb{R}^2, \mathbb{R}^3$ etc.
- La scelta della funzione f(x) non è univoca

$$f(x) \geq 0$$
 $\int_{\Omega} f(x) dx = 1$

- Probabilità di un evento $\Rightarrow P(A) \stackrel{\triangle}{=} \int_A f(x) dx$
 - si può verificare che tale legge soddisfa gli assiomi di Kolmogorov
 - facilmente generalizzabile al caso di $\Omega \subseteq \mathbb{R}^2, \mathbb{R}^3$ etc.
- La scelta della funzione f(x) non è univoca
 - problema analogo a quello della scelta delle probabilità degli eventi elementari in uno spazio discreto

Applicazione al caso della lancetta rotante ⇒ possibile scegliere la funzione

$$f(x) = \begin{cases} \frac{1}{2\pi} & x \in [0, 2\pi[\\ 0 & \text{altrimenti} \end{cases}$$

Applicazione al caso della lancetta rotante ⇒ possibile scegliere la funzione

$$f(x) = \begin{cases} \frac{1}{2\pi} & x \in [0, 2\pi[\\ 0 & \text{altrimenti} \end{cases}$$

• In questo modo si ha

$$P(A) = \int_A \frac{1}{2\pi} dx = \frac{1}{2\pi} \int_A dx \implies P(A) = \frac{\mathsf{misura}(A)}{\mathsf{misura}(\Omega)}$$

Applicazione al caso della lancetta rotante ⇒ possibile scegliere la funzione

$$f(x) = \begin{cases} \frac{1}{2\pi} & x \in [0, 2\pi[\\ 0 & \text{altrimenti} \end{cases}$$

• In questo modo si ha

$$P(A) = \int_{A} \frac{1}{2\pi} dx = \frac{1}{2\pi} \int_{A} dx \implies P(A) = \frac{\mathsf{misura}(A)}{\mathsf{misura}(\Omega)}$$

• Con questa scelta si trova:

$$P(A_1) = \frac{1}{4}$$
 $P(A_2) = \frac{1}{2}$ $P(A_3) = 0$

Applicazione al caso della lancetta rotante ⇒ possibile scegliere la funzione

$$f(x) = \begin{cases} \frac{1}{2\pi} & x \in [0, 2\pi[\\ 0 & \text{altrimenti} \end{cases}$$

In questo modo si ha

$$P(A) = \int_{A} \frac{1}{2\pi} dx = \frac{1}{2\pi} \int_{A} dx \implies P(A) = \frac{\mathsf{misura}(A)}{\mathsf{misura}(\Omega)}$$

• Con questa scelta si trova:

$$P(A_1) = \frac{1}{4}$$
 $P(A_2) = \frac{1}{2}$ $P(A_3) = 0$

 Una conseguenza abbastanza sorprendente è che gli eventi elementari hanno probabilità nulla

• Legge uniforme: (caso generale)

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

ullet Applicabile se la misura di Ω è finita

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- ullet Applicabile se la misura di Ω è finita
- ullet Se la misura di Ω è infinita necessario trovare funzioni più complicate

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- ullet Applicabile se la misura di Ω è finita
- ullet Se la misura di Ω è infinita necessario trovare funzioni più complicate
- Esempio: arrivo pacchetti ad un router a partire da un certo istante

•
$$\Omega = [0, +\infty[$$

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- ullet Applicabile se la misura di Ω è finita
- ullet Se la misura di Ω è infinita necessario trovare funzioni più complicate
- Esempio: arrivo pacchetti ad un router a partire da un certo istante
 - $\Omega = [0, +\infty[$
 - non è possibile scegliere una legge uniforme

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- ullet Applicabile se la misura di Ω è finita
- ullet Se la misura di Ω è infinita necessario trovare funzioni più complicate
- Esempio: arrivo pacchetti ad un router a partire da un certo istante
 - $\Omega = [0, +\infty[$
 - non è possibile scegliere una legge uniforme
 - una possibile scelta è $f(x) = \alpha e^{-\lambda x} u(x)$ (legge esponenziale)

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- Applicabile se la misura di Ω è finita
- Se la misura di Ω è infinita necessario trovare funzioni più complicate
- Esempio: arrivo pacchetti ad un router a partire da un certo istante
 - $\Omega = [0, +\infty[$
 - non è possibile scegliere una legge uniforme
 - una possibile scelta è $f(x) = \alpha e^{-\lambda x} u(x)$ (legge esponenziale)
 - determinare il valore di α in funzione di λ
- Il significato di f(x) è quello di densità di probabilità:

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{\omega \in (x, x + \Delta x)\}}{\Delta x}$$

$$f(x) = \begin{cases} \frac{1}{\mathsf{misura}(\Omega)} & x \in \Omega \\ 0 & \mathsf{altrimenti} \end{cases}$$

- ullet Applicabile se la misura di Ω è finita
- ullet Se la misura di Ω è infinita necessario trovare funzioni più complicate
- Esempio: arrivo pacchetti ad un router a partire da un certo istante
 - $\Omega = [0, +\infty[$
 - non è possibile scegliere una legge uniforme
 - una possibile scelta è $f(x) = \alpha e^{-\lambda x} u(x)$ (legge esponenziale)
 - determinare il valore di α in funzione di λ
- Il significato di f(x) è quello di **densità di probabilità**:

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{\omega \in (x, x + \Delta x)\}}{\Delta x}$$

- ullet se f(x) è continua, si dimostra applicando il teorema della media del calcolo integrale
- facilmente generalizzabile al caso $\Omega \subseteq \mathbb{R}^2, \mathbb{R}^3$ etc.

Riferimenti

• G. Gelli, Probabilità e informazione, 2015 (capitolo 1)