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Principal Component Analysis (PCA) is a statistical 
technique

Dimensionality reduction
Lossy data compression
Feature extraction
Data visualization

It is also known as the Karhunen-Loeve transform   

PCA can be defined as the principal subspace 
such that the variance of the projected data is 
maximized 

Principal Component Analysis
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The second-order methods are the most popular 
methods to find a linear transformation

This methods find the representation using only the 
information contained in the covariance matrix of 
the data vector x

PCA is widely used in signal processing, statistics, 
and neural computing

Second-Order methods
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Principal Components

In a linear projection down to one dimension, the optimum choice  of projection, 
in the sense of minimizing the sum-of-squares error, is obtained first subtracting 
off the mean of the data set, and then projecting onto the first eigenvector u1 of 
the covariance matrix.
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We introduce a complete orthonormal set of D-
dimensional basis vectors (i=1,…,D)

Because this basis is complete, each data point 
can be represented by a linear combination of the 
basis vectors 

Projection error minimization
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We can write also that 

Our goal is to approximate this data point using a  
representation involving a restricted number M < 
D of variables corresponding to a projection onto 
a lower-dimensional subspace

Projection error minimization
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As our distortion measure we shall use the squared 
distance between the original point and its 
approximation averaged over the data set so that 
our goal is to minimize  

The general solution is obtained by choosing the 
basis to be eigenvectors of the covariance matrix 
given by 

Projection error minimization
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The corresponding value of the distortion measure 
is then given by 

We minimize this error selecting the eigenvectors
defining the principal subspace are those 
corresponding to the M largest eigenvalues 

Projection error minimization
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Complex distributions

A linear dimensionality reduce technique, such as PCA, 
is unable to detect the lower dimensionality. In this case 
PCA gives two eigenvectors with equal eigenvalues. 
The data can described by a single eigenvalue 
parameter h

Addition of a small level of noise to data having an 
intrinsic. Dimensionality to 1 can increase its intrinsic 
dimensionality to 2. The data can be represented to 
a good approximation by a single variable h and 
can be regarded as having an intrinsic 
dimensionality of 1.
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Typically Hebbian type learning rules are used

There are two type of NN able to extract the 
Principal Components: 

Symmetric (Oja, 1989)  

Hierarchical (Sanger, 1989)

Unsupervised Neural Networks
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PCA and Unsupervised Neural Network

Symmetric PCA NN

Hierarchical  PCA NN

Single layer Neural Network

[ ] ( )[ ]22 xwy TEE =

Objective function
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ICA versus PCA

12

PCA maximises the variance and projections onto the basis vectors are 
mixtures. ICA correctly finds the two vectors onto which the projections 
are independent. 
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Mixing matrix
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Non-linear objective function

x
L-dimensional vector

( ){ }xwTfE
w (weights) 

Maximization

where E is the expectation with respect to the (unknown) 
density of x and  f(.) is a continue function (e.g. ln cosh(.))
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Unsupervised Neural Network

Standard PCA
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Cocktail party

Sources Mixtures Estimated-Sources

s A x W y
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Source estimation

x1(t), x2(t),x3(t) are the observed signals, 
s1(t), s2(t), s3(t) the source signals

Source signals Mixed signals Estimated signals

y1(t), y2(t),y3(t) are the separated signals
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Independent Component Analysis (ICA) 
statistical and  computational technique for revealing hidden 
factors that underlie sets of random variables, measurements, or 
signals

ICA can be seen an extension of Principal Component 
Analysis (PCA) and Factor Analysis (FA)

The technique of ICA was firstly introduced in early 1980s 
in the context of the Neural Networks (NNs) modeling

ICA is becoming one of the exciting new topics, both in the 
field  of NNs, mainly unsupervised learning, and in 
advanced statistics and signal processing

Independent Component Analysis

18
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random variable (rv) or stochastic variable is 
a variable whose value results from a measurement 
on some type of random process

The cumulative distribution function (cdf) Fx of a 
random variable x at point x = x0 is defined as the 
probability 

For continuous rv the cdf is a nonnegative, 
nondecreasing continuous function 

Probability distributions and densities

)()( 00 xxPxFx £=

1)(0 0 ££ xFx
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The probability density function (pdf) px(x) is 
obtained as the derivative of its cumulative 
distribution function

The cdf is computed by using  

Probability distributions and densities
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Assume now that x is a n-dimensional random 
vector of continuous random variables

The cdf is computed by using  

Distribution of a random vector
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Joint and marginal distributions
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Let g(x) denote any quantity derived from the 
random vector x the expectation of g(x) is

Moments are expectations used to characterize a 
random vector. The mean vector is

The n x n correlation matrix is   

Expectation and moments 

{ } ò
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Covariance matrix
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Two random vectors x and y are uncorrelated if 
their cross-covariance matrix is a zero matrix 

The rvs x and y are said independent if and only 
if

For random vectors is

Uncorrelated Gaussian rvs are also independent. This 
property is not shared by other distributions in 
general

Uncorrelatedness and independence 
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Consider a scalar rv x, the j-th moment is defined 
as (j=1,2,…)

The j-th central moment

Higher-order statistics 
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The third central moment is called the skewness
(asymmetricity of the pdf)  

The 4-th moment and central moment are applied 
in ICA

Skewness

{ }33 )( xmxE -=µ
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Usually the 4-order statistic (i.e. cumulants) is 
employed and it is called Kurtosis

A distribution having kurtosis 
Zero is called mesocurtic
Negative platykurtic (subgaussian)
Positive leptokurtic (supergaussian)   

Kurtosis

{ } { }[ ]224 3)( xExEx -=kurt
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The differential entropy of a rv is defined as 

Can be interpreted as  a measure of randomness. 
If the rv is concentrated on certain small intervals, 
its differential entropy is small

Differential entropy

{ })(log)(log)()( xpEdppxH xxx -=-= ò xxx
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Mutual information is a measure of the information 
that members of a set of random variables have 
on other random variables in the set 

where x is the vector containing all the xi

If xi are independent they give no information on 
each other 

Mutual Information
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Mutual information can be considered a distance 
using the Kullback-Leibler divergence

Can be considered as a distance between pdfs
Is always nonnegative
Is zero if and only if the two distributions are equal 
Can be symmetrized  

Kullback-Leibler divergence

ò= x
x
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The Negentropy is a measure that is zero for a 
Gaussian variable and always nonnegative  

A simple approximation is (standardized rv) 

Negentropy
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A more robust approximation is

where k1 and k2 are positive constants, G1and G2

are odd and even function, respectively (e.g. G1(x) 
= x3 and G2(x) = x4) 

Negentropy
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Newton’s method is one of the most efficient ways for 
function minimization F(w)

The updating rule is (by using the gradient and the 
Hessian)

The convergence of the Newton’s method is quadratic

Newton’s method 
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The Lagrange method 
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We want to maximize the negentropy using this 
approximation

The multi-unit problem is

A fixed point algorithm is obtained by applying the 
Newton’s method to the Lagrangian of this 
optimization problem (FastICA)

ICA
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In many cases we have constrained optimizations 

ICA
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Approach 
Reformulation of the MUSIC (MUlti SIgnal Classificator ) 
frequency estimator for unevenly sampled data 
Rosbust PCA Neural Network to extract signal 
information 

Periodicities estimation
Light curves

W UMa-system (e.g. U Pegasi), Cepheid (e.g. Su Cygni), 
blazars, ecc. 

Stratigraphic sequences
Tobenna, Raggeto, San Lorenzello montains

Frequency estimator 

37
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STIMA approach

MUSIC estimator for unevenly sampled data
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Light curve SU Cygni 

Light curve Lomb’s Periodogram STIMA approach

STIMA approach Scargle’s Periodogram

Frequency 
variation

Collaboration with the Department of Physics (Unversity of Naples “Federico II”) and Astronomic 
Observatory of Capodimonte
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Light curve U Pegasi (I data set)

Light curve 
Lomb’s Periodogram

STIMA approach
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Light curve U Pegasi (II data set)

Light curve Lomb’s Periodogram

STIMA approach Comparison
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Radio variability of blazars 

Fig.sc.1 Light curve of SU Cygni Fig.sc.2 Lomb’s estimate Fig.sc.3 ne estimate

Fig.suc.6 ne estimate with enlarged window Fig.suc.7 ne estimate with enlarged window

A0224+671. Results for the 22 GHz (left panel) and 37 (right panel), daily 
averaged datasets. Sinusoids with a period equal to those provided by 
STIMA

0945 + 408. Results for the 22 (left) and 37 GHz (right)
Collaboration with the Department of Physics of Unversity of Naples “Federico II”, Astronomic 
Observatory of Padova, Dept. Of Astronomy of the University of Michigan, Metsahovi Radio 
Observatory, Kylmala, Finland
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Radio variability of blazars

Fig.sc.1 Light curve of SU Cygni Fig.sc.2 Lomb’s estimate Fig.sc.3 ne estimate

Fig.suc.6 ne estimate with enlarged window Fig.suc.7 ne estimate with enlarged window

1226+023. Panels 
a and b: results for 
the 22 GHz and the 
37 GHz daily 
averaged radio 
curves, 
respectively.
Panels c, d and e: 
the same for the 
4.8, 8 and 14.5 
GHz data, 
respectively
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Radio variability of blazars

Fig.sc.1 Light curve of SU Cygni Fig.sc.2 Lomb’s estimate Fig.sc.3 ne estimate

Fig.suc.6 ne estimate with enlarged window Fig.suc.7 ne estimate with enlarged window

2200 + 420. Panels 
have the same 
meaning as in the
previous figure
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Stratigraphic sequences

Mount  San Lorenzello stratigraphic sequence

An example of 
stratigraphy in a mountain

Collaboration with the Istituto Geomare (NA)
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Estimation process

The method is the most powerful tool because it accurately finds the real spectral features, 
comprehensive of frequencies which the others methods do not find or confuse with the noise. They also 
require low computing time.
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Periodicities estimation

STIMA  approach Scargle’s Periodogram estimation

STIMA and filtering
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Cocktail party

Sources Mixtures Estimated-Sources

s A x W y
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Source estimation

x1(t), x2(t),x3(t) are the observed signals, 
s1(t), s2(t), s3(t) the source signals

Source signals Mixed signals Estimated signals

y1(t), y2(t),y3(t) are the separated signals
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ICA is used to analyze the seismic signals produced by 
explosions of the Stromboli volcano

It has been experimentally proved that it is possible to 
extract the most significant components from seismometer 
recorders

In particular, the signal, eventually thought as generated 
by the source, is corresponding to the higher power 
spectrum, isolated by our analysis

Furthermore, the amplitude of the source signals has been 
found by using a simple trick and so overcoming, for this 
specific case, the classical problem of ICA regarding the 
amplitude loss of the separated signals

ICA and seismic signals 
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Seismic signals

Array position

An example of explosion-quake

Collaboration with the Department of Physics of the Unversity Salerno and Gran Sasso Observatory
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Source estimation

Radial separated signals
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The aim of this work is to analyze and to resynthesize
acoustic signals emitted by organ pipes recorded in real 
environments

By applying ICA to the recordings, we have established 
that a single note is itself composed of three self-
oscillating signals (Andronov oscillator) with well defined 
frequencies

the pipe acoustic signals can be described by a mixture of non-
linear oscillations obtained by a self-sustained feedback system
Considering this non-linear system, an additive synthesis model is 
proposed

Suitable analogical and integrate circuit models, able to 
reproduce the registered waveform and sound in listening, 
have been designed

ICA and pipe organ sound
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Pipe organ

C-E-G

mixtures

Do Mi Sol
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Source estimation 

Do note: a) C-E-G chord signals 
and their PSD; 
b) FastICA separation;
c) Principal components of the
covariance matrix; 
d) FastICA separation with four 
components
e) Estimated signals after 
denoising
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Simulated notes

Comparison between simulated and
real C note (523 Hz) 

Comparison between simulated and
real C note (263 Hz) 
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Analogi circuit

Andronov analogical circuit

Andronov system by using Matlab Simulink 
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Now we consider a novel approach to solve the permutation 
indeterminacy in the separation of convolved mixtures in 
frequency domain

These are obtained applying a Short Time Fourier Transform on a 
set of fixed frames 

To solve the ambiguity of the amplitude dilation, a simple 
disassemble method is proposed

The permutation indeterminacy is solved using an approach 
based on the Hungarian algorithm that solves an Assignment 
Problem and an algorithm of Dynamic Programming 

To obtain the distances in the Assignment Problem, a Kullback-Leibler
divergence is adopted

ICA and real environment 
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Real environment

In real cases we have to consider the reverberation and delay 
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Convolved mixtures  

Convolved mixtures 
(FIR filter) 

Estimate sources
(FIR filter) 

Product in frequency domain  (STFT)
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Convolved mixtures  
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Permutation
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Speech-Music

convolution 1

convolution 2

estimation 1

estimation 2

Separated signals

APDP
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Speech-Speech

convolution 1

convolution 2

estimation 1

estimation 2

Separated signals
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Extracting multiple source signals from a single 
channel mixture is an open problem and a 
challenging research field with several 
applications 

We present a method based on the phase space 
reconstruction of the mixture

we estimate the embedding dimension and the time lag 
of a mixture
we use the estimated parameters to obtain the 
architecture (input and output neurons) of a Robust PCA 
(RPCA) Neural Network

Single channel music transcription
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Chaotic features 

Time-series generated by an electronical 
Colpitts circuit that oscillates chaotically.

Phase space representation with 
t = 4 and embedding dimension = 3
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Oscillator and collpits

Harmonic oscillator Indepedent basis obtained by using RPCA

Independent basis obtained by using RPCAColpitts time series
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Oscillator

Mixture Phase space on the first two components

First two independent basis Comparison between the mixture and 
the reconstructed signal
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Colpitts

Phase space reconstruction on 3 of the 
10 estimated components

10 independent basis components Comparison between the mixture and 
reconstructed signal
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It is based on 
Robust PCA
data base of features
Kullback-Leibler
MUSIC frequency estimator 

Several results are proposed 
Synthetic 

Piano and trumpet
Real recording

Blue room – Chet Baker
Real recording in a real environment 

Shadows – Kismet  

Transcription
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Experimental results 

Non-linear PCA separated sources 
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Experimental results 

Piano classified components 

Time domain 

MUSIC frequency estimation

trumpet classified components 

Time domain 

MUSIC frequency estimation
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Experimental results 

tTranscription

piano

Trumpet
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We consider different notes for the piano (A4, G4, 
C4, D4, E4, F4, B4) and the single note A4 for the 
trumpet

Aim of this experiment is to show that we can 
obtain a perfect separation also varying the 
fundamental frequency of the waveform

Experimental results
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Experimental results 

Transcription

piano

trumpet
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We consider a real recorded song

Blue Room song played by Chet Baker
Drum (shuffle)
Piano
Bass 
Trumpet 

We present the extraction of the trumpet score

Experimental results



IS
P 

–
N

on
-L

in
ea

r 
PC

A
 a

nd
 IC

A
Experimental results

Solo sequence Wafeform in the
database

score
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We consider a song recorded in a real 
environment 

Shadows song played by Kismet
One drum 
Bass 
2 Guitars (accompaniment and solo) 
Voice

We present the extraction of the snare and the 
kick bass drum scores 

Experimental results
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Experimental results

Sequence Wafeforms in the
database

snare

kick bassscore



IS
P 

–
N

on
-L

in
ea

r 
PC

A
 a

nd
 IC

A

The proposed approach divides the clustering phase 
in several steps

Pre-processing
Robust PCA for unevenly sampled data 

Pre-clustering
Competitive learning (Winner Take All, Self Organizing Maps, 
Probabilistic Principal Surfaces, ecc.)

Agglomerative clustering
Hirarchical agglomerative clustering based on Fisher and 
Negentropy information

Visual and interactive data exploration
Multi-Dimensional Scaling (MDS)

NEgentropy based Clustering (NEC)
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Fisher’s linear discriminant is a classification 
method that project high-dimensional data onto a 
line

The projection maximizes the distance between 
the means of the two classes while minimizing the 
variance within each class

Fisher’s Linear Discriminant
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We agglomerate the regions using the following 
objective function 

NEC approach
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NEC approach

In this case we obtain JNEC = 0.0079 in which aF JF = 0.0040 and 
aN JN = 9.73x10-4 + 0.0029
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NEC approach

In this case we obtain JNEC =0.4064 in which aF JF = 0.1455 and 
aN JN = 1.39x10-4 + 0.2669
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NEC approach

In this case we have two classes with the same direction on the y axes. 
We obtain JNEC = 0.6794 in which aF JF = 0.3027 and aN JN = 3.49x10-4 + 0.3763



IS
P 

–
N

on
-L

in
ea

r 
PC

A
 a

nd
 IC

A
NEC approach

In this case we have two complete overlapped classes. We obtain JNEC = 
0.26603 in which aF JF = 0.0188 and  aN JN = 0.2196 + 0.0275. We note that 
the information is high since the asymmetry information is high. 
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NEC approach

In this case we have two overlapped classes. We obtain JNEC = 0.2861 in 
which aF JF = 0.0910 and  aN JN = 3.64x10-4 + 0.194876. We note that the 
information is high since the bimodality/sparsity information is higher than the 
other information. 
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NEC approach

The clusters obtained 
varying the threshold 
(dt)
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NEC approach

The clusters obtained 
varying the threshold 
(dt)
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NEC approach

The clusters obtained 
varying the threshold 
(dt)
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Clustering and Negentropy

In this case we consider a 2-dimensional 
data set composed by two separated classes

Clusters obtained by using 
unsupervised clustering
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Dendogram

Dendogram obtained by using the NEC approach
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Dendogram and clusterization

Clusters obtained by using the NEC approach
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Interface

NEC toolbox
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Interface

NEC toolbox
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Interface

NEC toolbox
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Human Cell Cycle Gene Expression Data

Collaboration with the Department of Physics of the Unversity of Naples “Federico II” and Telethon 
Institute of Genetics and Medicine (TIGEM) of Naples
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NEC dendrogram
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NEC dendrogram

MDS Labeling
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NEC dendrogram

The archetype behavior with corresponding standard deviation for the 
for particularly significant clusters found in our analysis
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NEC dendrogram

The archetype behavior with corresponding standard deviation for the 10 outliers
clusters found in our analysis.
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This work aims at introducing an approach to analyze the independence 
between different model data in a multi-model ensemble context

The models are operational long-range transport and dispersion models
real-time simulation of pollutant dispersion or the accidental release of radioactive 
nuclides in the atmosphere

An approach based on the hierarchical agglomeration of distributions of 
predicted radionuclide concentrations is proposed 

two different similarity measures: Negentropy information and Kullback-Leibler
divergence

These approaches are used to analyze the data obtained during the ETEX-1 
exercise 

The approach  select subsets of independent models, whose performance are 
comparable to those from the whole ensemble

Model selection for ensemble dispersion 

Collaboration with the Institute for Environment and Sustainability European Commission, Joint 
Research Centre TP 441, 21020 Ispra - Varese (Italy)
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Accidental release of radioactive material from NPP 
or other (i.e. Chernobyl,  Algeciras, Hemel
Hempstead)

Atmospheric transport and dispersion over the 
continent, potential for trans-boundary character 

Where is it?
When is getting there?
How much should I expect?

At national level, met services and environmental 
protection agencies use long range transport and 
dispersion models to forecast concentration and 
deposition

Emergency response
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Ensemble treatment - concept

Models Model results

Single model 
results analysis

Model grouping
and model 
comparison 
within groups

Model grouping
and comparison 
of groups

Single model vs 
group of models
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The Median Model was shown to outperform the results of 
any single deterministic model in reproducing the 
concentration of atmospheric pollutants 

during the ETEX experiment

A well-known statistical approach has been applied to
multimodel data analysis

Bayesian Model Averaging (BMA)
similarities and differences between models were explored by 
means of correlation analysis

Note - If different models are used to simulate the same 
phenomenon they probably will give similar responses

model ensemble results may lead to erroneous interpretations 
this is more probable if models are strongly dependent

Ensemble and independence
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Model selection

Dendogram

Kullback-Leibler

Negentropy
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The ETEX-1 experiment concerned the release of pseudo-
radioactive material on 23 October 1994 at 16:00 UTC 
from Monterfil, southeast of Rennes (France)

A steady westerly flow of unstable air masses was present over 
central Europe
Such conditions persisted for the 90 h that followed the release 
with frequent precipitation events over the advection area and a 
slow movement toward the North Sea region

Several independent groups worldwide tried to forecast 
these observations

Each simulation, and therefore each ensemble member, is 
produced with different atmospheric dispersion models and is 
based on weather fields generated by (most of the time) 
different Global Circulation Models (GCM)
All the simulations relate to the same release conditions 

ETEX-1
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ETEX-1 results

Negentropy dendrogram
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ETEX-1 results

Kl divergence dendrogram
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ETEX-1 results

blue cluster in the Negentropy
dendrogram. 
The visualized models are 
m14, m21, m01, m15, m06 and m24, 
respectively

Distributions after 78 hours of the 
models m14 (a), m21 (b),
m01 (c), m15 (d), m06 (e), m24 (f)
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ETEX-1 results

Distributions in the magenta cluster of the Negentropy dendrogram. In
this case the models are m09, m11, m13 and m16

Distributions after 78 hours of the 
models m09 (a), m11 (b), m13 (c), 
m16 (d)
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ETEX-1 results

Distributions in the Negentropy dendrogram. In this case the models are 
m02, m23, m08

Note: the same three models are agglomerated together in the KL dendrogram 
but they belong to another extended cluster

Distributions after 78 hours of the 
models m02 (a), m23 (b) and
m08 (d)



IS
P 

–
N

on
-L

in
ea

r 
PC

A
 a

nd
 IC

A
ETEX-1 results

In the KL dendrogram the model m16 is associated together with the model m25
but we can note that its distribution is closer to that of model m13 than m25. 
In the Negentropy based dendrogram models m13 and m16 are agglomerated. 
Moreover model m13 in the KL dendrogram is agglomerated with model
m06, but, they have a rather different distribution

Distributions after 78 hours of the 
models m16 (a), m25 (b),
m13 (c) and m06
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ETEX-1 results

In the KL dendrogram it is associated only with model m14

m00

m14


