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Information theory is a branch of applied
mathematics and electrical engineering involving the 
quantication of information

Claude E. Shannon (1948)
Finds fundamental limits on signal processing 
operations, such as compressing data and reliably
storing and communicating data

Introduction
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What’s information?
Information is the reduction of uncertainty
Some (informal) axioms

if something is certain its uncertainty = 0
uncertainty should be maximum if all choices are equally
probable
uncertainty (information) should add for independent
sources

Information Theory
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How to measure information content?
Let X be a random variable whose outcome x takes
values in 𝑎!, … , 𝑎" with probabilities 𝑝!, … , 𝑝"

Shannon’s information content for the outcome x = ai

Entropy

Information Theory

𝐻 𝑥 = 𝑎! = log"
1

𝑃(𝑥 = 𝑎!)
= log"

1
𝑝!

𝐻 𝑋 = .
!

𝑝!log"
1
𝑝!

= −.
!

𝑝!log" 𝑝!

sensible measure of expected (average) information content
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Information content
How many bits needed to compress your data?
Example

Observe a sequence «…00000100» with p1 = 0.1 (or p0 = 
0.9)

Information Theory

𝐻 𝑥 = 1 = log"
1
0.1

= 3.3𝑏𝑖𝑡𝑠

𝐻 𝑥 = 0 = log"
1
0.9

= 0.15𝑏𝑖𝑡𝑠
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Intuition
The «1» has less information

you don't get too much surprised with a 0

You don’t learn too much with a 0
The «1» is

more improbable
more surprising
more informative

Information Theory
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Information Theory

The entropy of an ensemble
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Consider a binary random variable that can take 
two values with probabilities p and 1 – p

Information and uncertainty

Shannon information content of an outcome with probability p, as a 
function of p. The less probable an outcome is, the greater its Shannon
information content.
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Consider a binary random variable that can take 
two values with probabilities p and 1 – p

Information and uncertainty
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Improbable events are more informative, but less
frequent on average

The entropy satisfies the two first axioms
observation of a certain event carries no information
maximum information is carried by uniformly probable
events

Information and uncertainty
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Variables x and y that are independent

Shannon’s information content

Information under independence
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Differential Entropy
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Vecrtor a with PDF P(a)

Differential Entropy

𝐻 𝐚

= :𝑃 𝐚 log"
1

𝑃(𝐚)
𝑑𝐚 =

−:𝑃 𝐚 log" 𝑃(𝐚) 𝑑𝐚

entropy is related to the PDF volume

𝐻 𝐚 =
1
2
ln(2𝜋𝑒𝜎") Unidimensional Gaussian

𝐻 𝐚 =
1

log(2) ln( 2𝜋𝑒𝜎
#
" Σ

$
") Multidimensional Gaussian
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Joint Entropy

Conditional Entropy

More about Entropy
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Chain rule for information content

Chain rule for entropy

More about Entropy
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Mutual Information

More about Entropy
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More about Entropy
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Kind of distance

Kullback-Leibler Divergence

𝐷%& 𝑃 𝐚 , 𝑄 𝐚 = :𝑃 𝐚 log"
𝑃(𝐚)
𝑄(𝐚)

𝑑𝐚

𝐷%& ≥ 0

𝐷%& = 0 𝑖𝑓𝑓 𝑃 𝐚 = 𝑄(𝐚)
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Two distributions p and q

Cross-Entropy

𝐻 𝐩, 𝐪 = 𝐻 𝐩 + 𝐷%&(𝐩| 𝐪

𝐷%&(𝐩| 𝐪 = 𝐻 𝐩, 𝐪 − 𝐻(𝐩)
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Two distributions p and q

Cross-Entropy
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Mutual Information

More on MI

𝐼 𝑥, 𝑦 =.
'

.
(

𝑝 𝑥, 𝑦 log
𝑝(𝑥, 𝑦)

𝑝$ 𝑥 𝑝"(𝑥)

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)



M
ul

tim
ed

ia
 S

ys
te

m
s 

–
In

tro
du

ct
io

n
to

 In
fo

rm
at

io
n 

Th
eo

ry

22

More on MI
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Mutual Information

More on MI

𝐼 𝑥, 𝑦 =.
'

.
(

𝑝 𝑥, 𝑦 log
𝑝(𝑥, 𝑦)

𝑝$ 𝑥 𝑝"(𝑥)

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)
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how many bits are needed to describe the 
outcome of an experiment

One way of measuring the information content of 
a random variable is simply to count the number
of possible outcomes

binary name to each outcome, the length of each
name would be 

Data compression

|𝐴)|

log" 𝐴) 𝑏𝑖𝑡𝑠 a power 2 |𝐴)|
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Raw bit content

Risk
𝛿 the probability that there will be no name for an outcome x

Compression strategy with risk 𝛿
Smallest sufficient subset  

can be constructed by ranking the elements of AX in 
order of decreasing probability and adding successive 
elements starting from the most probable elements until
the total probability is greater than (1 - 𝛿).

Data compression

𝐻* 𝑋 = log" |𝐴)|
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Data compression

The raw bit content of this ensemble is 3 
bits, corresponding to 8 binary
names
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Essential bit content of X is

Shannon’s Source Coding Theorem
Let X be an ensemble with entropy H(X) = H bits. 
Given 𝜖 > 0 and 0 < 𝛿 < 1, there exists a positive 
integer N0 such that for N > N0

Source Coding Theorem

𝐻+ 𝑋 = log" |𝑆+|
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Communication channel

Message is the index set from which a message is drawn
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Discrete Memoryless Channel (DMC) 
consists of two finite sets X and Y and a collection of 
probability mass functions p(y|x)

(M, n) code for the channel (X, p(y|x),Y)
encoding function 𝑔: 1:𝑀 → 𝑋#, which is a mapping
from the index set to a set of codewords or codebook
decoding function 𝑓: 𝑌# → 1:𝑀 , which is a 
deterministic rule assigning a number (index) to each
received vector

Discrete Memoryless Channel

(𝑋, 𝑝 𝑦 𝑥 , 𝑌)
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Channel Coding Theorem
Let us dene the channel capacity as follows

for a discrete memoryless channel a rate R is achievable
if and only if R < C

Channel Coding Theorem
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Channel Coding Theorem
even though the channel introduce errors, the information 
can still be reliably sent over the channel at all rates up to 
channel capacity

the noisiness of the channel does not limit the reliability of the 
transmission but only its rate

Shannon’s key idea 
sequentially use the channel many times, so that the law of large 
number comes into effect

Shannon’s outline of the proof is indeed strongly based on 
the concept of typical sequences and in particular on a joint 
typicality based decoding rule
Shannon proves that choosing the codes at random is
asymptotically the best choice whatever the channel is

for finite n the knowledge of the channel may help to choose a 
better code

Channel Coding Theorem


