

Intelligent Signal Processing

Streaming and Compressive Sensing

Angelo Ciaramella

- Compressive Sensing (o Compressed Sensing) technique
- client-server architecture
- Compressice Sensing for
 - compression
 - packet loss reconstruction

Compressive Sensing (CS)

- is a new sensing modality, which compresses the signal being acquired at the time of sensing
- Signals can have sparse or compressible representation either in original domain or in some transform domain
- Relying on the sparsity of the signals, CS allows us to sample the signal at a rate much below the Nyquist sampling rate
- the varied reconstruction algorithms of CS can faithfully reconstruct the original signal back from fewer compressive measurements

CS was introduced by Donoho, Candès, Romberg, and Tao in 2004

- Emerging technique for signal processing
 - acquisition/reconstruction that violates the Nyquist-Shannon limit
 - less samples
- A signal can have sparse/compressible representation either in original domain or in some transform domains
 - Fourier transform, cosine transform, wavelet transform, etc. A few examples of signals having sparse
- Domains
 - natural images which have sparse representation in wavelet domain
 - speech signal can be represented by fewer components using Fourier transform
 - better model for medical images can be obtained using Radon transform
 - etc.

Linear inverse problems

- Many classic problems in computer can be posed as linear inverse problems
- Notation
 Signal of interest $x \in \mathbb{R}^N$
 - Observations
 $y \in \mathbb{R}^M$ matrix
 Measurement model
 $y = \Phi x + e$

measurement noise

measurement

 ${\scriptstyle \blacksquare}$ Problem definition: given ${\mathcal Y}$, recover ${\mathcal X}$

Linear inverse problems

Scenario 1

$$M \ge N$$
$$\hat{x} = \Phi^{-1}y$$

Scenario 2

M < N

- Measurement matrix has a (N-M) dimensional null-space
- Solution is no longer unique

Under-sampling ratio M/N

Image super-resolution

Low resolution input/observation

128x128 pixels

Image super-resolution

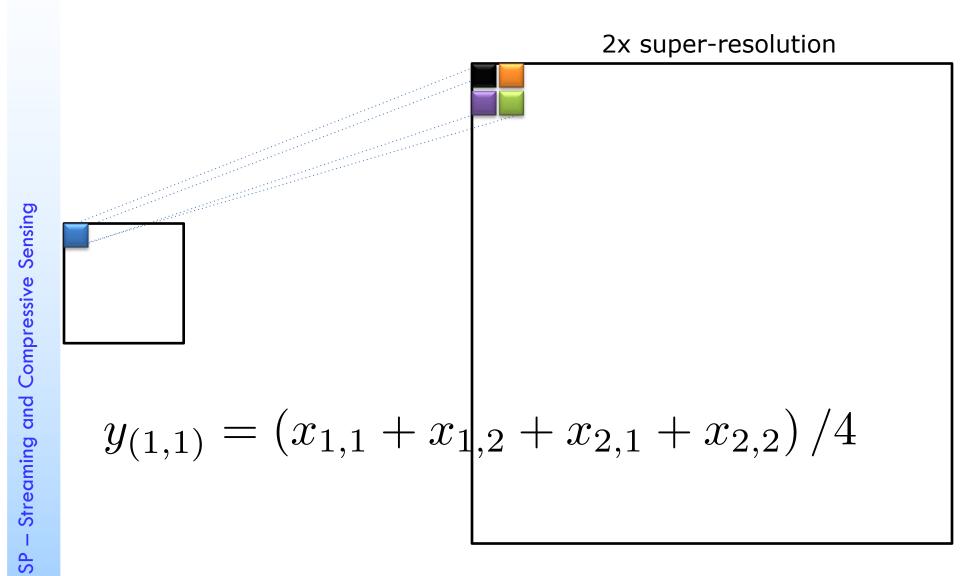
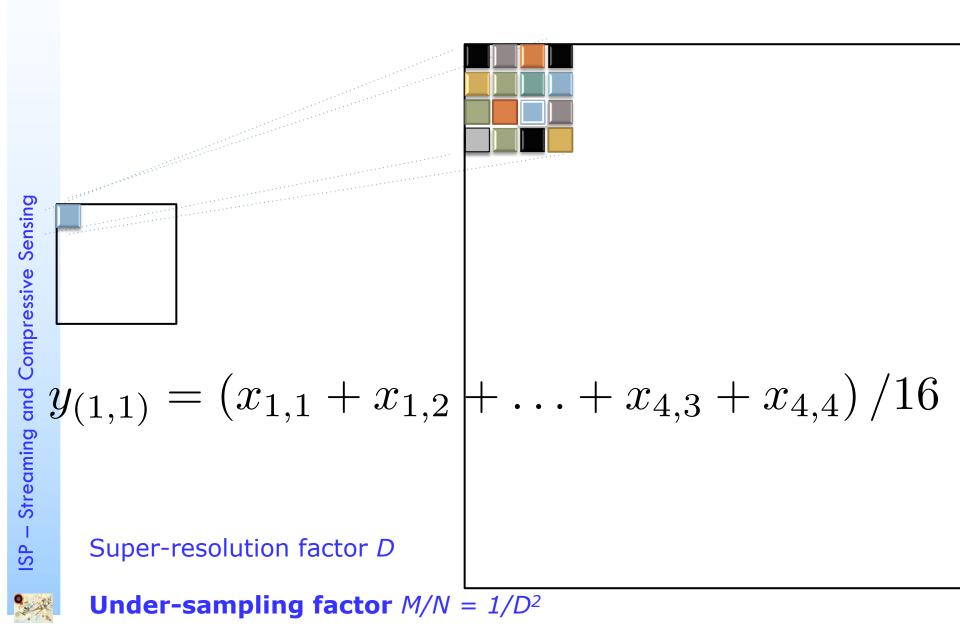
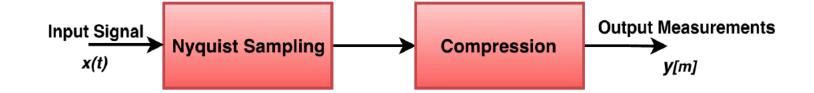


Image super-resolution

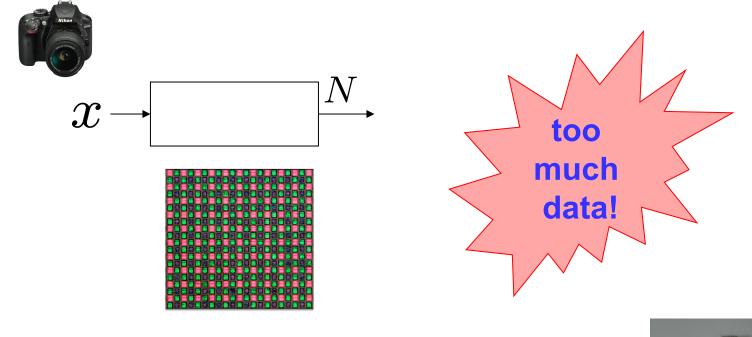






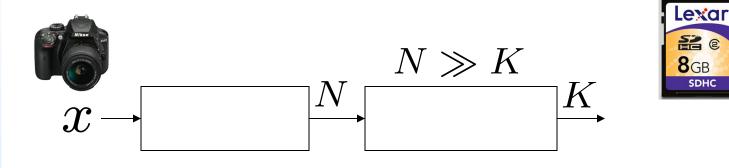
A comparision of sampling techniques: (a) traditional sampling, (b) compressive sensing.

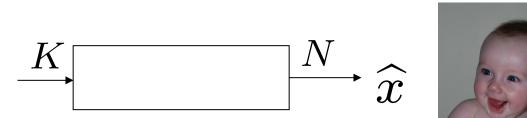
Sampling



ISP – Streaming and Compressive Sensing

Compression





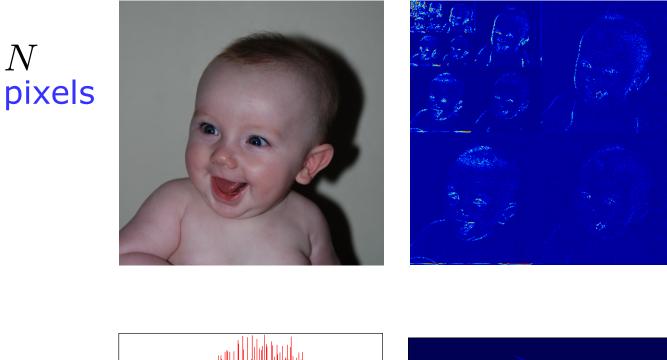
9

۱

 \simeq /

Sparsity

N



 $K \ll N$ large wavelet coefficients (blue = 0)

frequency wideband signal samples

 $K \ll N$ large Gabor (TF) coefficients

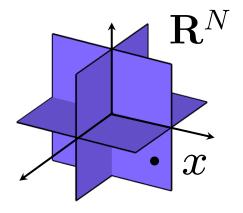
time

Sparsity

Sparse signal

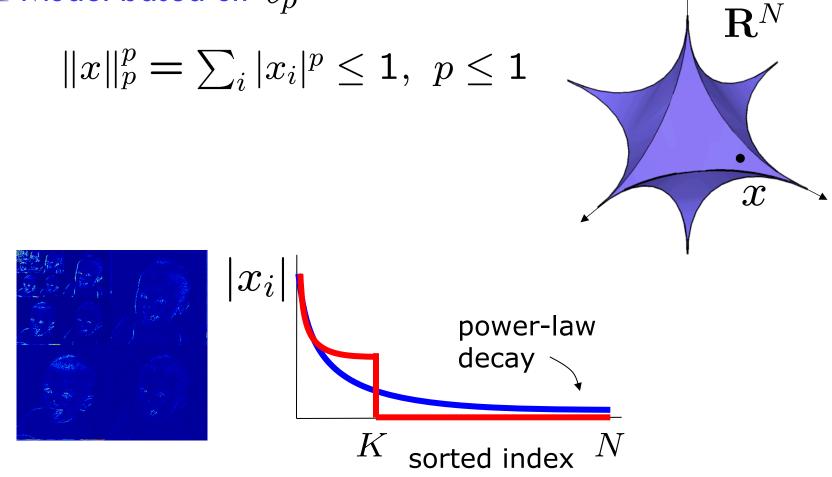
- only K out of N coordinates nonzero
- Model union of k-dimensional

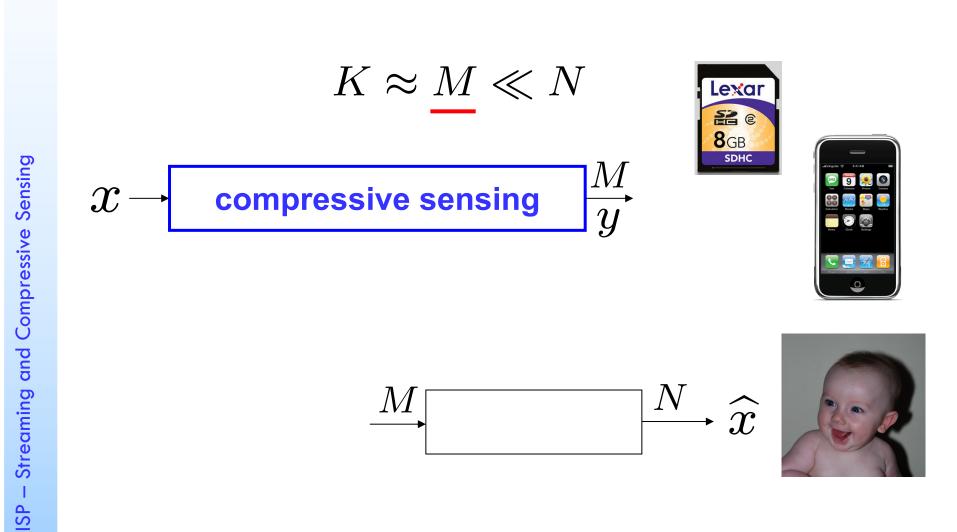
subspaces



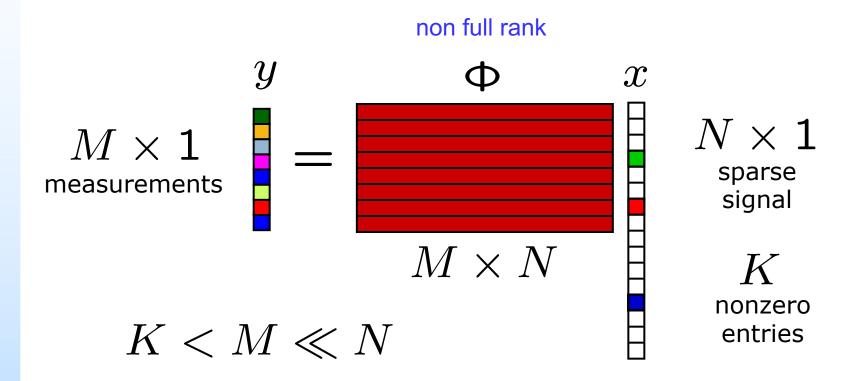
Sparsity

- Compressible signal
 - sorted coordinates decay rapidly with power-law
 - \blacksquare Model based on ℓ_p

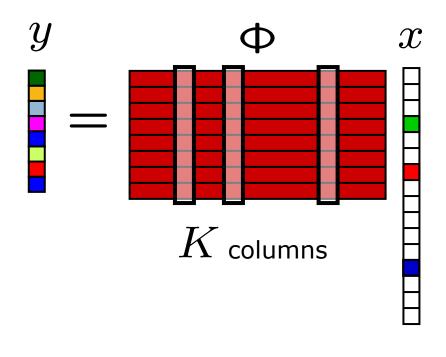


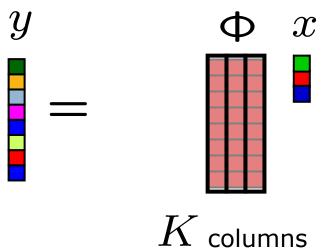


Compressive Sampling



How can it work?





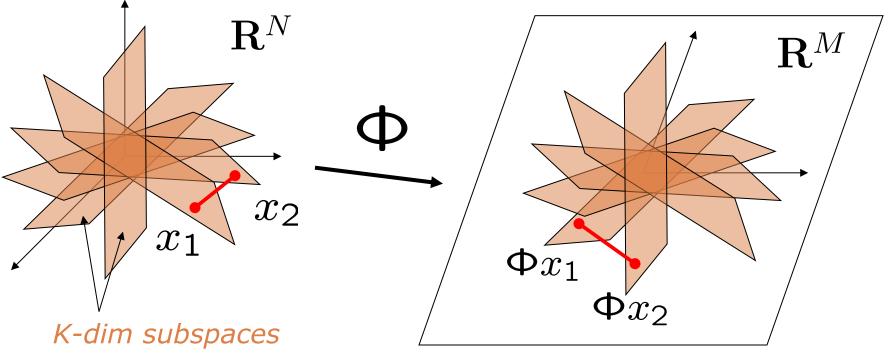
Restricted Isometry Property

- Design Φ so that each of its MxK submatrices are full rank (ideally close to orthobasis)
 - Restricted Isometry Property (RIP)

Streaming and Compressive Sensing

SP

Preserve the structure of sparse/compressible signals



Restricted Isometry Property

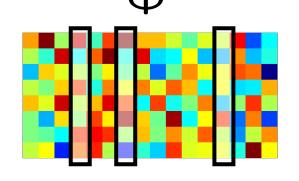
RIP of order 2K implies
 for all K-sparse x₁ and x₂

$$(1 - \delta_{2K}) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})$$

Ensure that

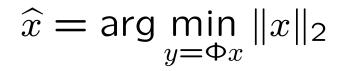
$$||x_1 - x_2||_2 \approx ||\Phi x_1 - \Phi x_2||_2$$

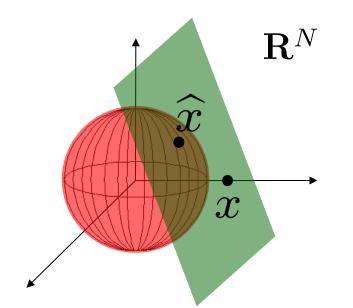
- Draw Φ at random
 - iid Gaussian
 - 📕 iid Bernoulli

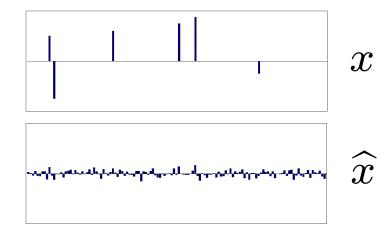


K columns

L₂ signal recovery



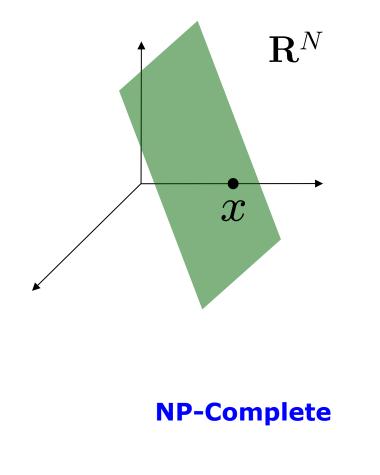




ISP – Streaming and Compressive Sensing

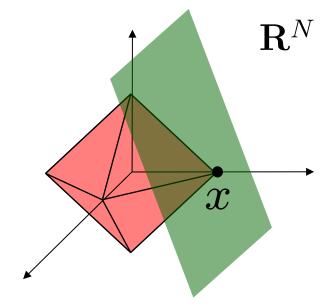
L₀ signal recovery

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$



L₀ signal recovery

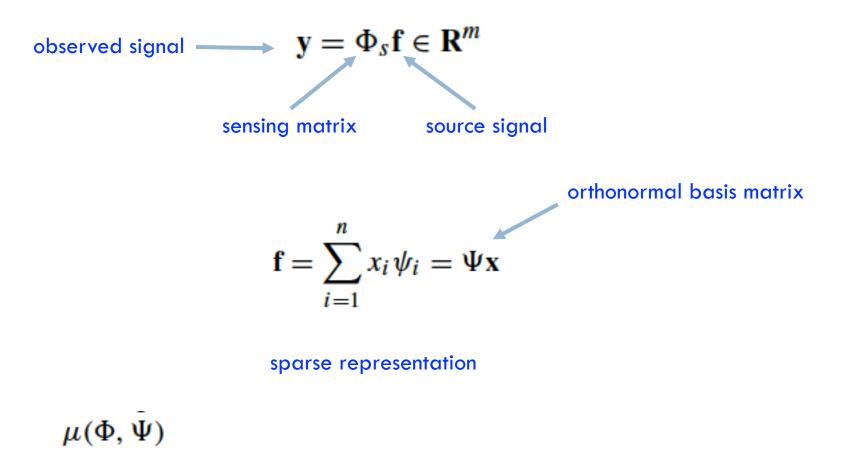
$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$



Polynomial time alg (linear programming)

ISP – Streaming and Compressive Sensing

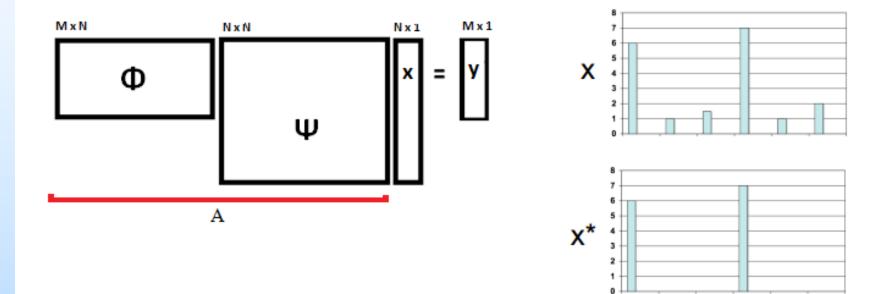
Contraction of the second



coherence misure

In our case ϕ is the indentity matrix and ψ is a dictionay (learned or obtained by DCT)

ISP – Streaming and Compressive Sensing



k=2

Optimization algorithm

I₀ -minimization problem is NP-hard

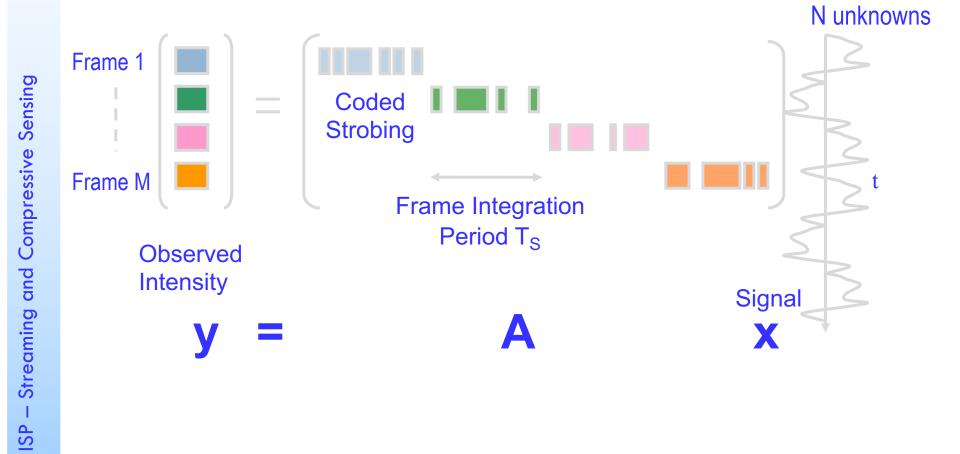
> min $\|\mathbf{x}\|_{L_1}$ subject to $y_k = \langle \phi_k, \Psi \mathbf{x} \rangle \quad \forall k \in M$ $\mathbf{x} \in \mathbb{R}^n$

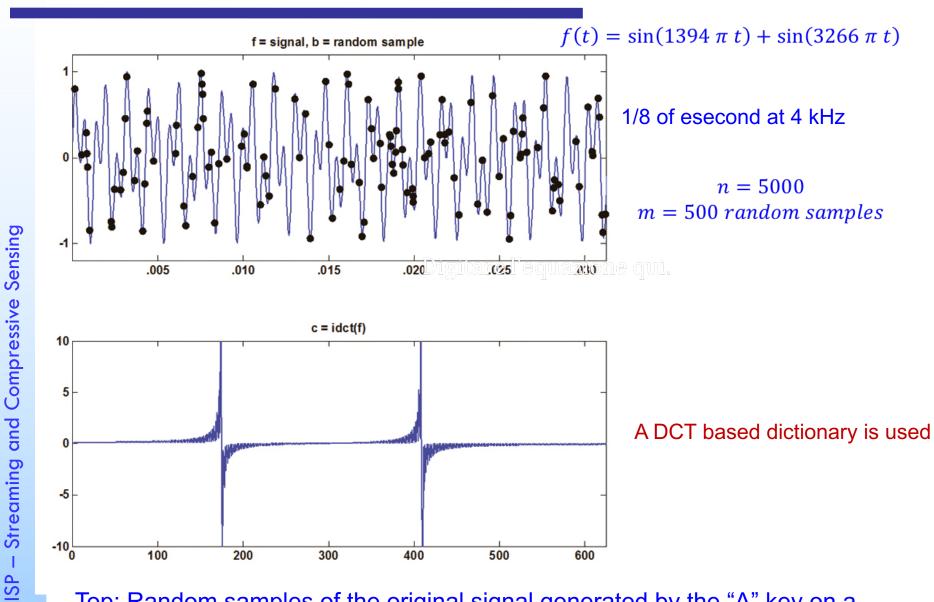
 $\mathbf{f}^* = \Psi \mathbf{x}^*$

reconstruction

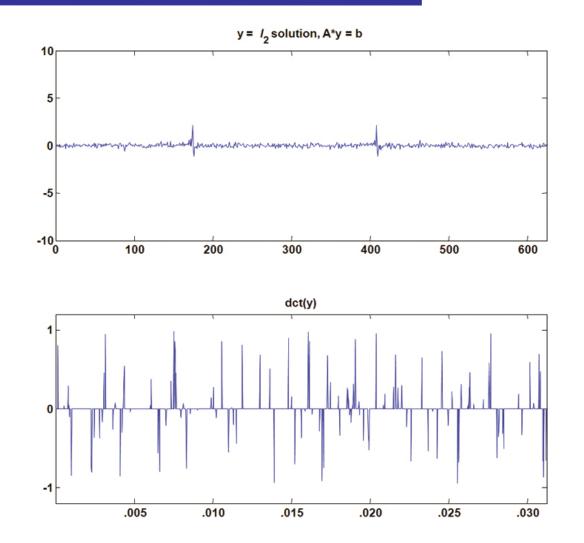
Convex optimization algorithm

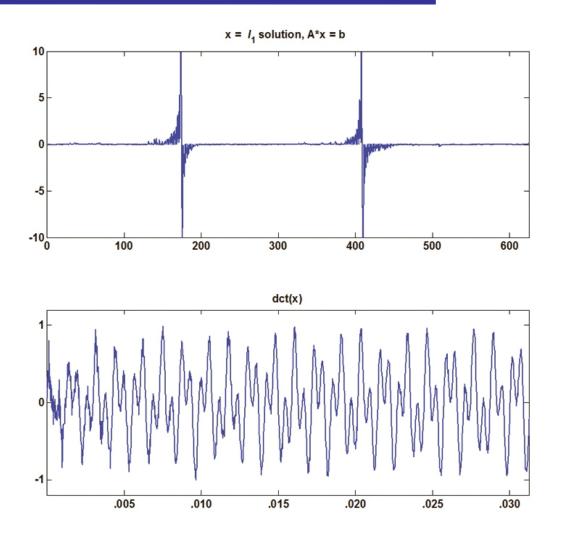
https://statweb.stanford.edu/~candes/l1magic/#code





Top: Random samples of the original signal generated by the "A" key on a touch-tone phone. Bottom: The inverse discrete cosine transform of the signal.





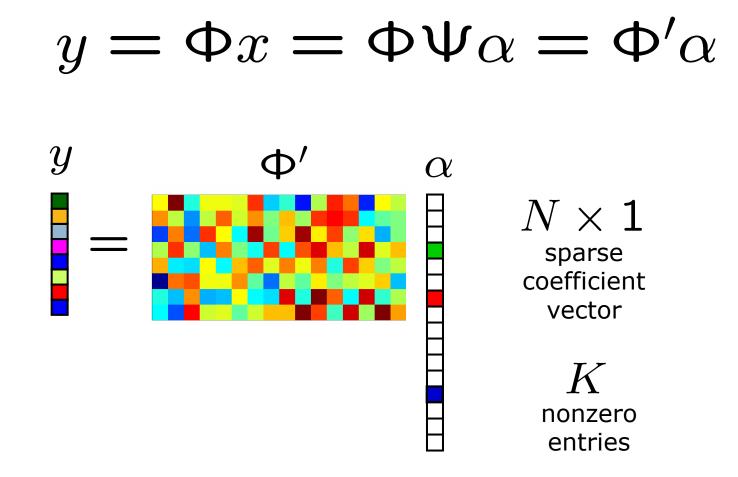
Results by uisng L_1 norm

Optimization algorithms

Signal recovery via iterative greedy algorithm

- (orthogonal) matching pursuit
- iterated thresholding
- CoSaMP

Universality



S SP

- Streaming and Compressive Sensing

Random measurements can be used for signals sparse in *any* basis: DCT/FFT/Wavelet/Learned Dictionary

Dictionay learning

Goal

Given training data

$$x_1, x_2, \ldots, x_T \qquad x_i \in \mathbb{R}^N$$

learn a dictionary D

$$x_i = Ds_i \qquad \begin{array}{c} D \in \mathbb{R}^{N \times Q} \\ s_i \in \mathbb{R}^Q \end{array}$$

where s_i are sparse

Dictionay learning

Optimization approach

$$\min_{D,S} \|X - DS\|_F$$

s.t
$$\forall i, \|s_i\|_0 \le K$$

Non-convex constraint

Bilinear in D and S

Optimization approach

$$\min_{D,S} \|X - DS\|_F$$

s.t
$$\forall i, \|s_i\|_0 \le K$$

Non-convex constraint

Bilinear in D and S

Biconvex in D and S

$$\min_{D,S} \|X - DS\|_F + \lambda \sum_k \|s_k\|_1$$

Given *D*, the optimization problem is convex in s_k Given *S*, the optimization problem is a least squares problem

Dictionay learning

- K-SVD
 - Solve using alternate minimization techniques
 - Start with D = wavelet or DCT bases
 - Additional pruning steps to control size of the dictionary

Sparse Modeling for Finding Representative Objects

$$\min \|\boldsymbol{Y} - \boldsymbol{Y}\boldsymbol{C}\|_F^2$$
 s.t. $\|\boldsymbol{C}\|_{1,q} \leq \tau, \ \mathbf{1}^\top \boldsymbol{C} = \mathbf{1}^\top$

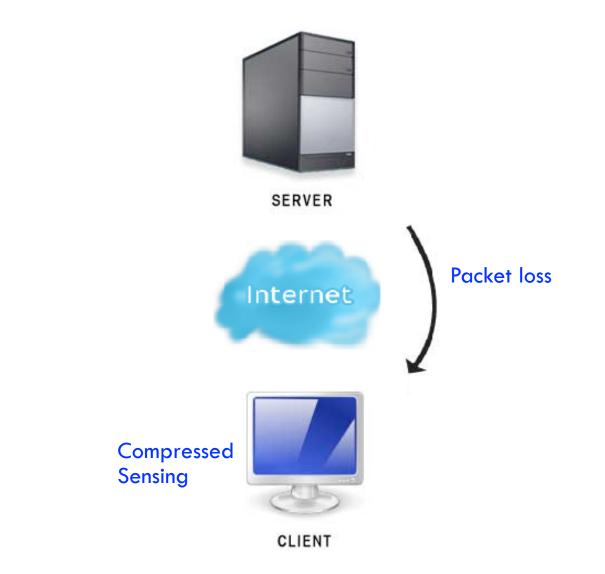
Finding Representative Objects

Deblurreing

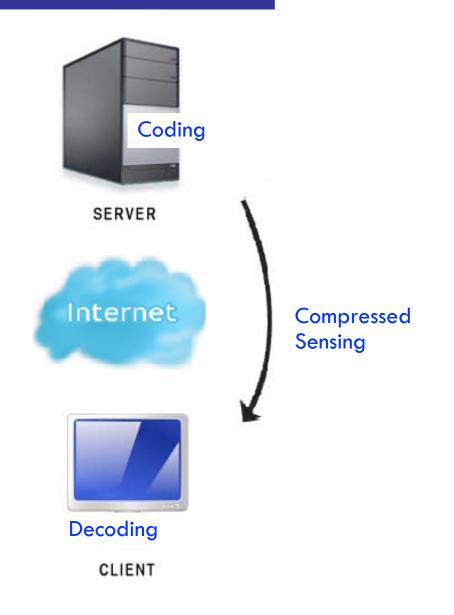
Blurred Photos

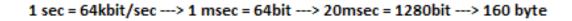
Deblurred Result

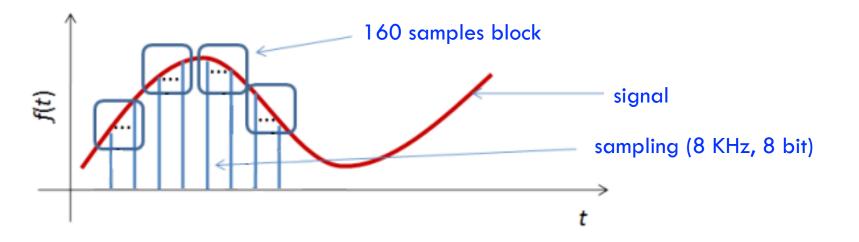
First scenario

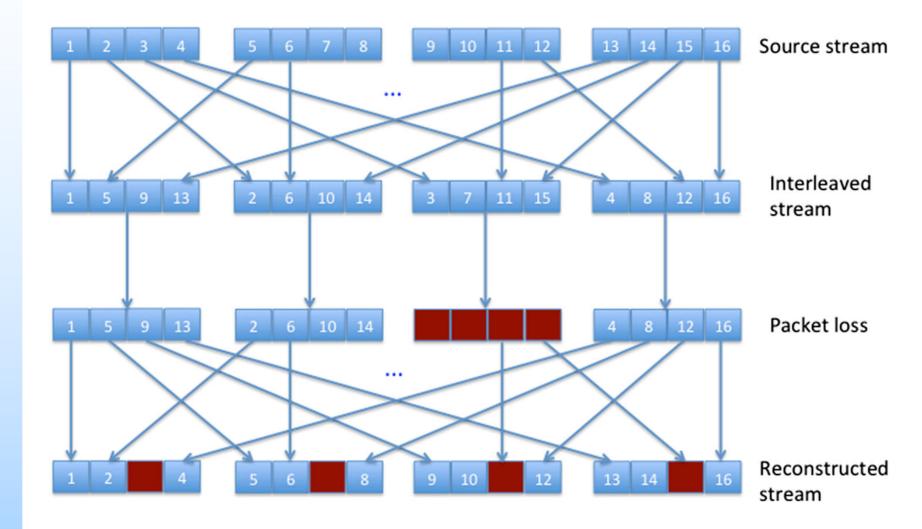


Second Scenario

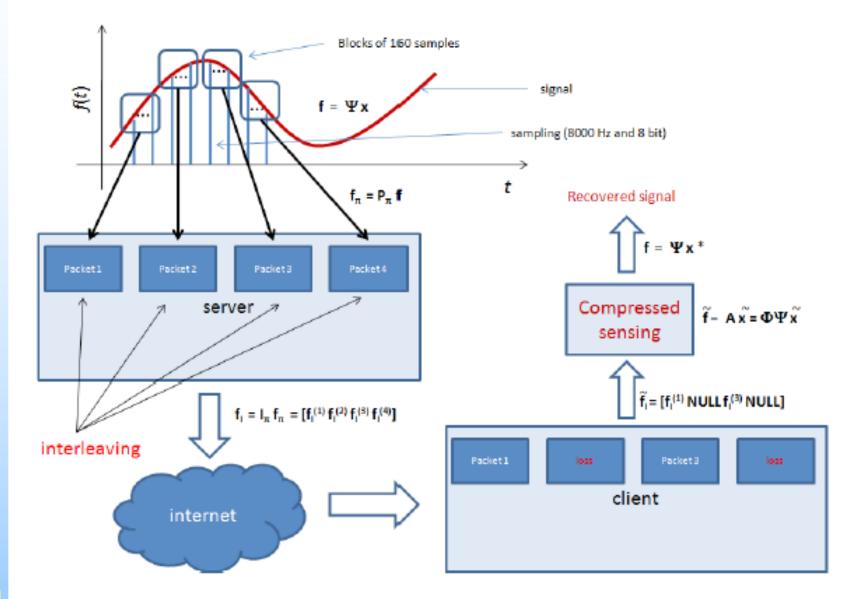








Reconstruction scheme



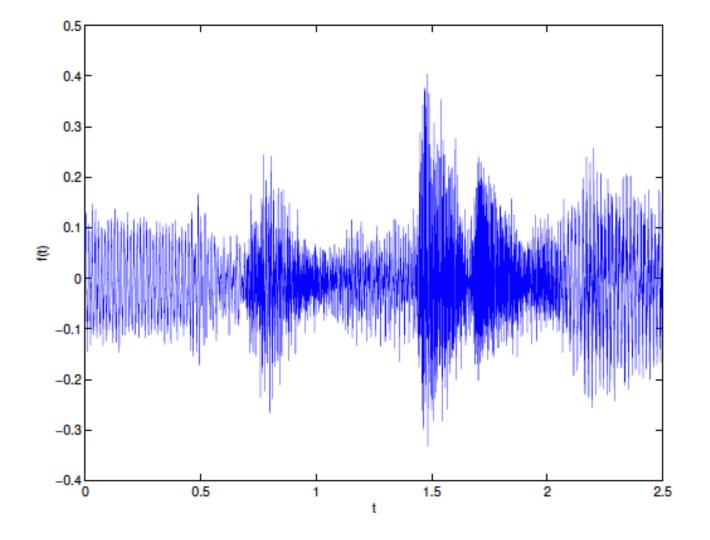


Fig. 4. Audio signal of a female speaker.

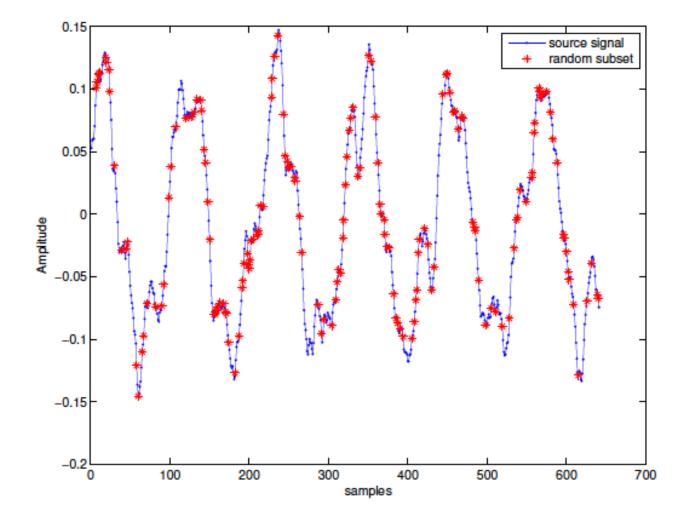
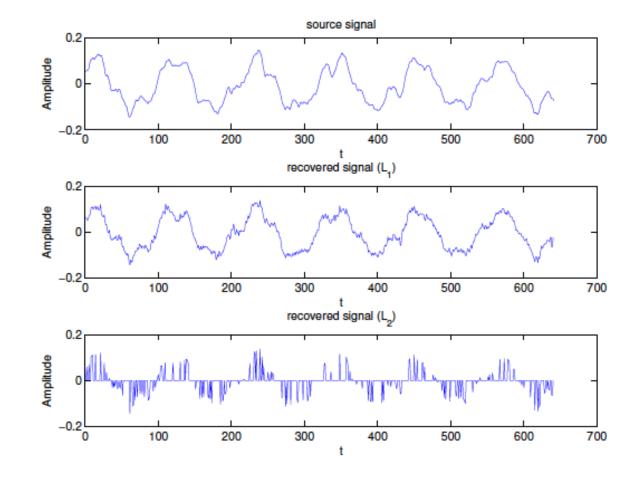
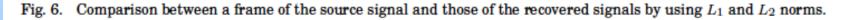
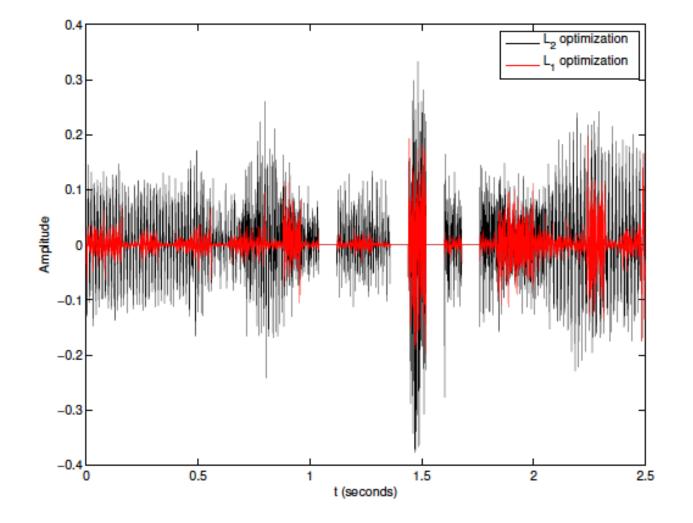
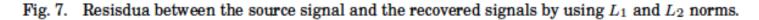


Fig. 5. Frame information after 3 packets lost.









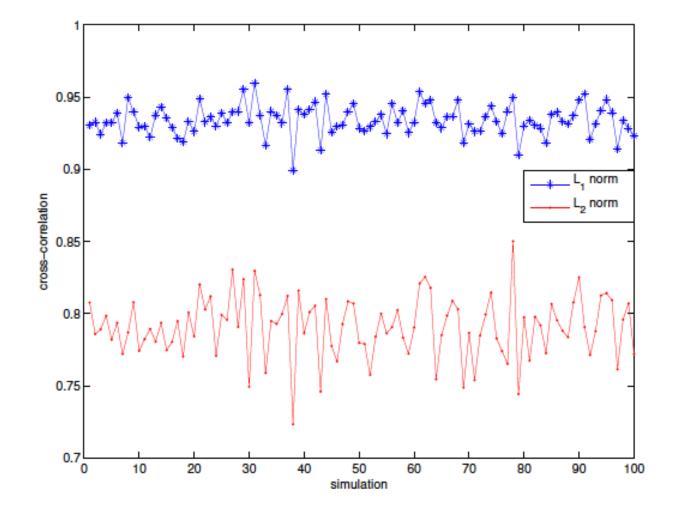


Fig. 8. Cross-correlation coefficients after 100 simulations: audio female speaker.

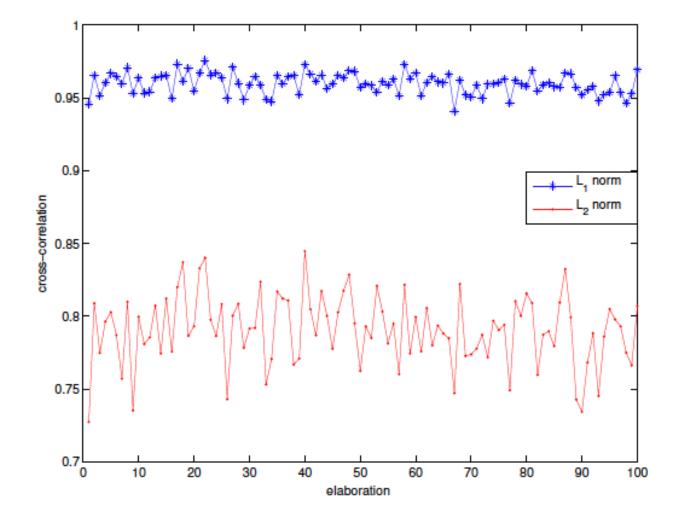


Fig. 9. Cross-correlation coefficients after 100 simulations: audio male speaker.

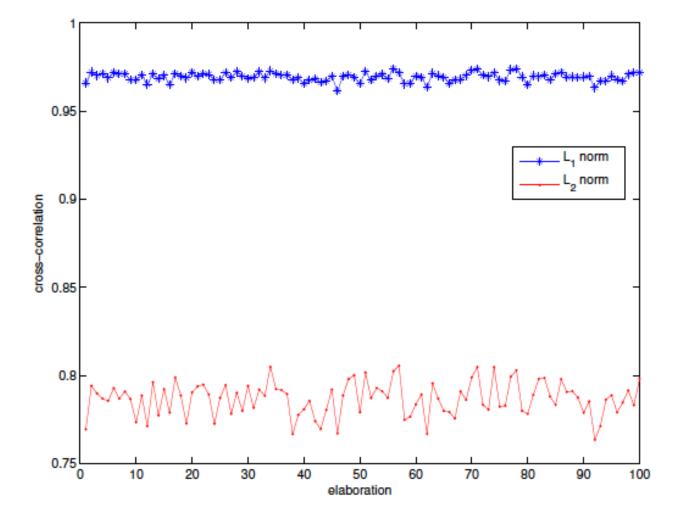


Fig. 10. Cross-correlation coefficients after 100 simulations: audio song.

Compression scheme

