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Compressive Sensing (o Compressed Sensing) 
technique

client-server architecture

Compressice Sensing for 
compression
packet loss reconstruction

Introduction



IS
P 

–
St

re
am

in
g 

an
d 

C
om

pr
es

siv
e 

Se
ns

in
g

Compressive Sensing (CS) 
is a new sensing modality, which compresses the signal
being acquired at the time of sensing
Signals can have sparse or compressible representation
either in original domain or in some transform domain
Relying on the sparsity of the signals, CS allows us to 
sample the signal at a rate much below the Nyquist
sampling rate
the varied reconstruction algorithms of CS can faithfully
reconstruct the original signal back from fewer
compressive measurements

Compressive Sensing
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CS was introduced by Donoho, Candès, Romberg, 
and Tao in 2004

Compressive Sensing
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Emerging technique for signal processing
acquisition/reconstruction that violates the Nyquist-Shannon limit

less samples

A signal can have sparse/compressible representation either in 
original domain or in some transform domains

Fourier transform, cosine transform, wavelet transform, etc. A few
examples of signals having sparse

Domains
natural images which have sparse representation in wavelet domain
speech signal can be represented by fewer components using Fourier 
transform
better model for medical images can be obtained using Radon 
transform
etc.

Compressive Sensing
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Many classic problems in computer can be posed
as linear inverse problems

Notation
Signal of interest

Observations

Measurement model

Problem definition: given ,  recover

Linear inverse problems

x 2 RN

y 2 RM

y = �x+ e
measurement 

noise

measurement 
matrix

y x
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Scenario 1

Scenario 2

Measurement matrix has a (N-M) dimensional null-space

Solution is no longer unique

Under-sampling ratio M/N

Linear inverse problems

M � N

x̂ = ��1y
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Image super-resolution

Low resolution 
input/observation

128x128 pixels
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Image super-resolution

y(1,1) = (x1,1 + x1,2 + x2,1 + x2,2) /4

2x super-resolution
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Image super-resolution
4x super-resolution

y(1,1) = (x1,1 + x1,2 + . . .+ x4,3 + x4,4) /16

Super-resolution factor D

Under-sampling factor M/N = 1/D2
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Compressive Sensing

A comparision of sampling techniques: (a) traditional
sampling, (b) compressive sensing.
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Sampling

sample too 
much 
data!
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Compression

compresssample

JPEG
JPEG2000

…

decompress
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Sparsity

pixels large
wavelet
coefficients

(blue = 0)

wideband
signal
samples

large
Gabor (TF)
coefficients

time

fr
eq
ue
nc
y
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Sparsity

Sparse signal
only K out of N coordinates nonzero
Model – union of k-dimensional
subspaces
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Sparsity

Compressible signal
sorted coordinates decay rapidly with power-law
Model based on 

sorted index

power-law
decay
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Compressive sensing

compressive sensing

recover
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Compressive Sampling

measurements sparse
signal

nonzero
entries

non full rank
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How can it work? 

columns

columns
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Design Φ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)

Restricted Isometry Property (RIP)

Restricted Isometry Property

K-dim subspaces

Preserve the structure of sparse/compressible signals
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RIP of order 2K implies
for all K-sparse x1 and x2

Ensure that

Draw Φ at random 
iid Gaussian
iid Bernoulli

Restricted Isometry Property

columns
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L2 signal recovery
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L0 signal recovery

NP-Complete
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L0 signal recovery

Polynomial time alg
(linear programming)
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Compressive Sensing

sensing matrix source signal

observed signal

sparse representation

orthonormal basis matrix

coherence misure
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Compressive Sensing
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Optimization algorithm

Convex optimization algorithm

reconstruction

https://statweb.stanford.edu/~candes/l1magic/#code

l0 -minimization
problem is NP-hard
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y

Observed 
Intensity

Signal

A x=

Coded 
Strobing

Frame 1

Frame M
Frame Integration 

Period TS

N unknowns

t
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Introduction

Top: Random samples of the original signal generated by the “A” key on a 
touch-tone phone. Bottom: The inverse discrete cosine transform of the signal.

1/8 of esecond at 4 kHz

A DCT based dictionary is used
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Introduction

Results by uisng L2 norm 
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Introduction

Results by uisng L1 norm 
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Signal recovery via iterative greedy algorithm
(orthogonal) matching pursuit
iterated thresholding
CoSaMP

Optimization algorithms
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Universality

sparse
coefficient

vector

nonzero
entries

Random measurements can be used for signals sparse in 
any basis: DCT/FFT/Wavelet/Learned Dictionary
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Goal
Given training data

learn a dictionary D

where si are sparse

Dictionay learning

x1, x2, . . . , xT xi 2 RN

xi = Dsi
si 2 RQ

D 2 RN⇥Q
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Optimization approach

Dictionay learning

min
D,S

kX �DSkF

s.t

8i, ksik0  K

Non-convex constraint

Bilinear in D and S

Non-convex constraint

Bilinear in D and S
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Optimization approach

Biconvex in D and S

Dictionay learning

min
D,S

kX �DSkF

s.t

8i, ksik0  K

Non-convex constraint

Bilinear in D and S

Non-convex constraint

Bilinear in D and S

min
D,S

kX �DSkF + �
X

k

kskk1

Given D, the optimization problem is convex in sk
Given S, the optimization problem is a least squares 
problem
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K-SVD
Solve using alternate minimization techniques

Start with D = wavelet or DCT bases
Additional pruning steps to control size of the dictionary

Sparse Modeling for Finding Representative
Objects

Dictionay learning
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Finding Representative Objects
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Deblurreing

Deblurred Result

Blurred Photos
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First scenario 

Packet loss

Compressed
Sensing
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Second Scenario

Compressed
Sensing

Coding    

Decoding
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Packet loss

42

160 samples block

signal    

sampling (8 KHz, 8 bit)    
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Interleaving

43
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Reconstruction scheme
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Experimental results
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Experimental results
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Experimental results



IS
P 

–
St

re
am

in
g 

an
d 

C
om

pr
es

siv
e 

Se
ns

in
g

Experimental results
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Experimental results
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Compression scheme

52


