

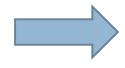
Intelligent Signal Processing Cognitive Radio Networks

Angelo Ciaramella

Introduction

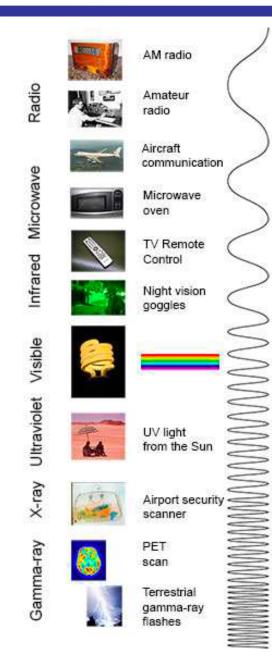
Cognition

mental action or process of acquiring knowledge and understanding through thought, experience, and the senses


Cognitive Radio

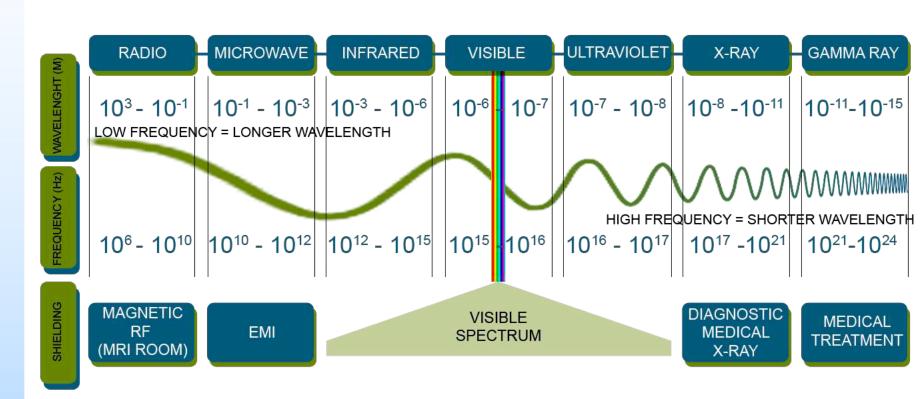
■ radio that is aware of its environment and the internal state and with knowledge of these elements and any stored predefined objectives can make and implement decisions about its behavior

Why CR



Scarsity

Natural resources



Electro Magnetic Spectrum

Electro Magnetic Spectrum

Standards for Radio Frequency Allocation

International Telecommunication Union (ITU)

 European Conference of Postal and Telecommunications Administrations (CEPT)

Inter-American Telecommunication Commission (CITEL)

Radio frequency bands

- Frequencies that are not usable for commercial purposes
 - are kept reserved for radio astronomy to avoid interference at radio telescopes

- Frequencies that are unlicensed and are open for personal or commercial use for free which
 - includes 2.4GHz and 5GHz WiFi, Bluetooth, cordless phones, etc.
- Frequencies that are licenced by the government
 - for purposes like telecommunication

Radio Spectrum

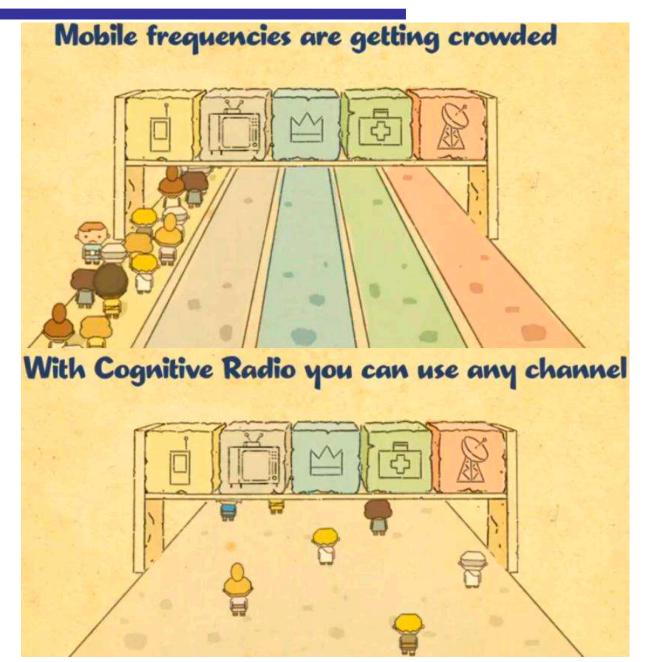
- Radio spectrum
 - electromagnetic spectrum from 3 Hz to 3000 GHz
- Electromagnetic waves
 - called radio waves
 - used in modern technology
 - in telecommunication
- To prevent interference between different users
 - the generation and transmission of radio waves is strictly regulated by national laws
 - coordinated by an international body, the International Telecommunication Union (ITU)

Band

Band

- small section of the spectrum of radio communication frequencies
- channels are used or set aside for the same purpose

- To prevent interference similar services are allocated in bands
 - e.g., broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies



ITU's Band Allocation

Band name	Band name Abbreviation ITU and band wavelength in air		and	Example uses		
Extremely low frequency	ELF	1	3–30 Hz 100,000 km – 10,000 km	Communication with submarines		
Super low frequency	SLF	2	30–300 Hz 10,000 km – 1000 km	Communication with submarines		
Ultra low frequency	ULF	3	300–3000 Hz 1000 km – 100 km	Submarine communication, communication within mines		
Very low frequency	VLF	4	3–30 kHz 100 km – 10 km	Navigation, time signals, submarine communication, wireless heart rate monitors, geophysics		
Low frequency	LF	5	30–300 kHz 10 km – 1 km	Navigation, clock time signals, AM longwave broadcasting (Europe and parts of Asia), RFID, amate radio		
Medium frequency	MF	6	300–3000 kHz 1 km – 100 m	AM (medium-wave) broadcasts, amateur radio, avalanche beacons		
High frequency	HF	7	3–30 MHz 100 m – 10 m	Shortwave broadcasts, citizens' band radio, amateur radio and over-the-horizon aviation communications, RFID, over-the-horizon radar, automatic link establishment (ALE) / near-vertical incidence skywave (NVIS) radio communications, marine and mobile radio telephony		
Very high frequency	VHF	8	30–300 MHz 10 m – 1 m	FM, television broadcasts and line-of-sight ground-to-aircraft and aircraft-to-aircraft communications, land mobile and maritime mobile communications, amateur radio, weather radio		
Ultra high frequency	UHF	9	300–3000 MHz 1 m – 100 mm	Television broadcasts, microwave oven, microwave devices/communications, radio astronomy, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS and two-way radios such as land mobile, FRS and GMRS radios, amateur radio		
Super high frequency	SHF	10	3–30 GHz 100 mm – 10 mm	Radio astronomy, microwave devices/communications, wireless LAN, most modern radars, communications satellites, cable and satellite television broadcasting, DBS, amateur radio		
Extremely high frequency	EHF	11	30–300 GHz 10 mm – 1 mm	Radio astronomy, high-frequency microwave radio relay, microwave remote sensing, amateur radio, directed-energy weapon, millimeter wave scanner		
Terahertz or Tremendously high frequency	THz or THF	12	300–3000 GHz 1 mm – 100 μm	Experimental medical imaging to replace X-rays, ultrafast molecular dynamics, condensed-matter physics, terahertz time-domain spectroscopy, terahertz computing/communications, remote sensing, amateur radio		

Cognitive Radio

Making Radios Self Aware

- Three steps are important for making radio self aware
 - Aware radios
 - Adaptive radios
 - Learning Radios

Aware Radios

- One motivation for an aware radio is providing information to the user
 - an aware radio may provide a pull-down menu of restaurants within a user-defined radius
 - code division multiple access (CDMA) based cellular system
 - aware of QoS metrics and makes reservations of bandwidth to improve overall QoS

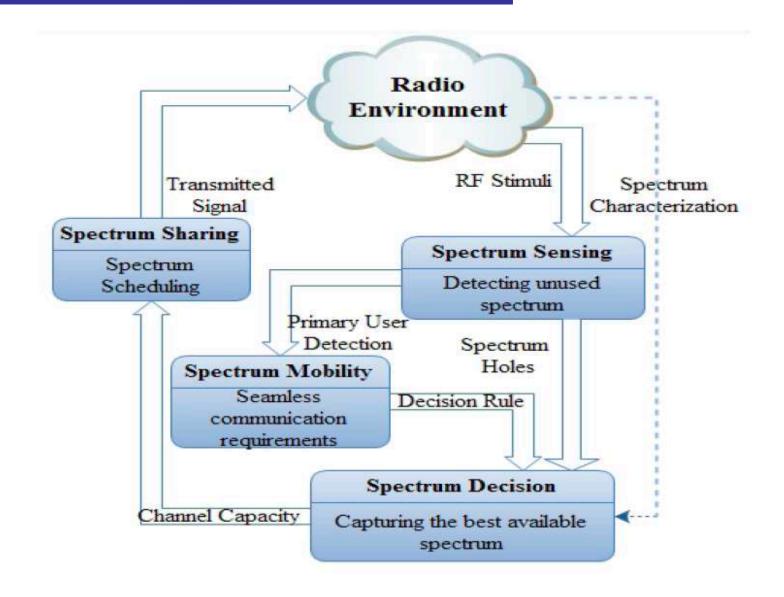
Adaptive Radios

- The various operating parameters that can be adapted are
 - frequency
 - instantaneous bandwidth
 - modulation scheme
 - error correction coding
 - channel mitigation strategies
 - equalizers or RAKE filters, system timing (e.g., a time division multiple access [TDMA] structure), data rate (baud timing), transmit power, and even filtering characteristics

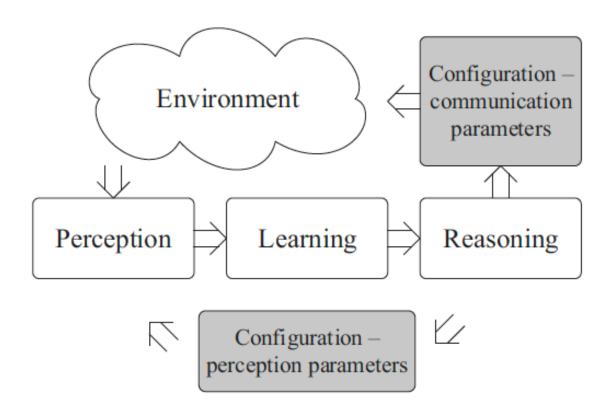
Adaptive Radios

Examples

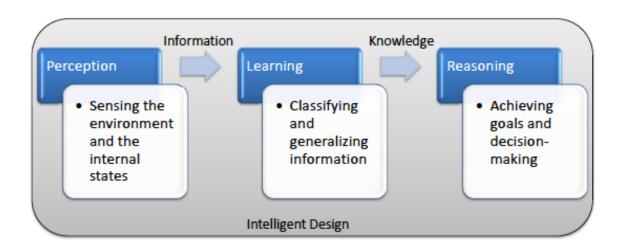
- frequency-hopping radio that changes hop pattern to reduce collisions
- radio that changes instantaneous bandwidth and/or system timing parameters in response to offered network load

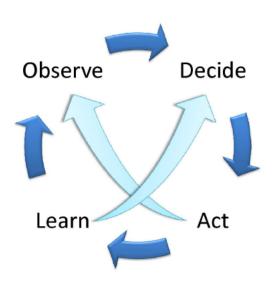


Learning Radios

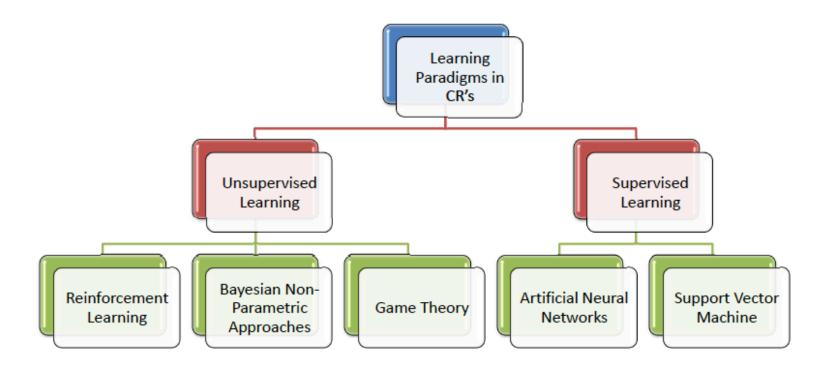

- A radio is said to be a learning radio or cognitive when they posses the following characteristics
 - Sensors creating awareness of the environment
 - Actuators to interact with the environment
 - A model of the environment that includes state or memory of observed events
 - A learning capability that helps to select specific actions or adaptations to reach a performance goal
 - Some degree of autonomy in action

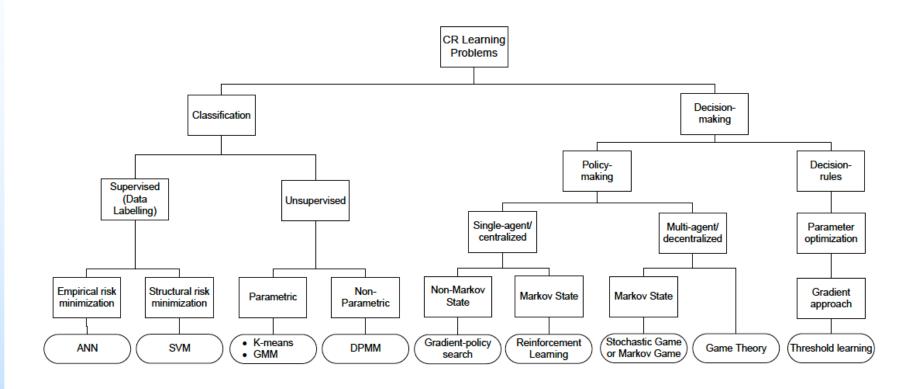
Radio Cycle

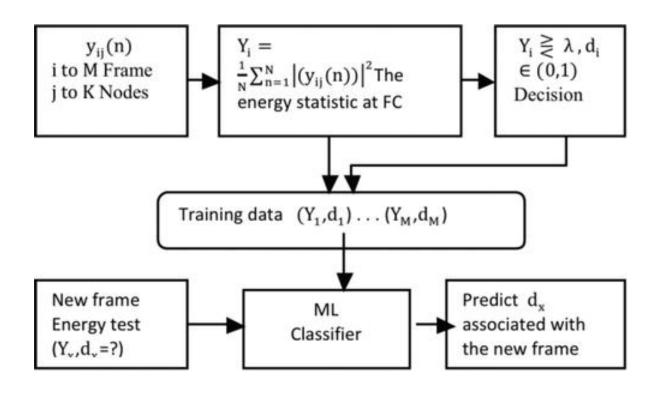


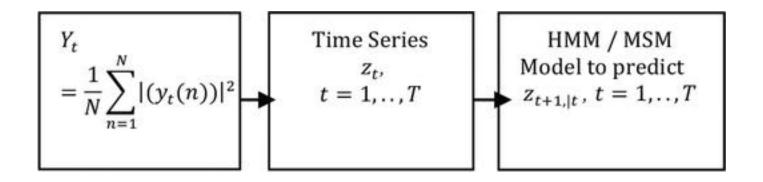


Cognitive Radio and Machine Learning in Intelligent Wireless Communications




Cognition cycle of an autonomus Radio


Supervised and unsupervised approaches for CR


Typical CR problerms

Block diagram of machine-learning-based fusion rule spectrum sensing

Block diagram of PU channel state prediction model

		Spectrum Sensing and MAC Protocols	Signal Classification and Feature Detection	Power Allocation and Rate adaptation	System Parameters Reconfiguration	Pros	Cons
Unsupervised learning techniques	Reinforcement learning (RL)	x				Optimal solution for MDP's	In general, suboptimal for POMDP's, DEC-MDP's and DEC- POMDP's
	Non-parametric Learning: DPMM		x			Does not require prior knowledge about the number of mixture components	Requires large number of iterations, compared to parametric methods
	Game theory- based Learning	x		x		Suitable for multi-player decision problems	Requires knowledge of different parameters (e.g. SINR, power, price from base stations, etc.) which is impractical in many situations
	Threshold Learning				x	Suitable for controlling specific parameters under uncertainty conditions	Requires training data
Supervised learning techniques	Artificial Neural Network (ANN)		x			Does not require prior knowledge of the distribution of the observed process	Suffers from overfitting Requires data labeling
	Support Vector Machine (SVM)		x			Has better performance for small training examples, compared to ANN	 Requires prior knowledge of the distribution of the observed process Requires data labeling

