

Intelligent Signal Processing Statistical Signal Processing

Angelo Ciaramella

Probability

- Ingredients of probability
 - Random experiment
 - A set of outcomes
 - The probabilities associated to these outcomes
 - We cannot predict with certainty the outcome of the experiment
 - We can predict «averages»!
- Philosophical aspects of probability
 - We want a probabilistic description of the physical problem
 - We believe that there's a statistical regularity that describes the physical phenomenon

Probability

Cannot predict how much rain, but the average suggests not to plant in Arizona

Probability

Result of tossing a coin is not predictable, but the average 53% tells me it is fair coin

Sample space

Sample space

- Experiment
 - process of observing the state at $t = t_0$
- Sample point
 - outcome of the experiment
- Sample space
 - set S of all possible sample points
- Event
 - event A in S that occurs (happens)

Sample space

s₁, s₂ and s₃: sample points
A, B: events
S: sample space

Probability space

Probability space

The sample space S is a probability space i to every event A there is a number P(A) that fulls

•
$$0 \le P(A) \le 1$$

• $P(A \cup B) = P(A) + P(B)$, iff $A \cap B = \emptyset$
• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
• $P(S) = 1$

Conditional probability

Conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{likelihood \times prior}{marginal \ likelihood}$$

Forward problem

Given a specied number of white and black balls in a box, what is the probability of drawing a black ball?

Reverse problem

Given that one or more balls have been drawn, what can be said about the number of white and black balls in the box?

Bayes' theorem

Example

- The department is formed by 60% men and 40% women. Men always wear trousers, women wear trousers or skirts in equal numbers. Which is the probability of meeting a girl with trousers is?
- A I see a girl
- B A person is wearing trousers
- The probability is

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{0.5 \times 0.4}{0.5 \times 0.4 + 1 \times 0.6} = 0.25$$

Random variable

- Random variable
 - A random variable is a real-valued function X(.) of sample points in a sample space:

• a function that assigns a real number x = X(s) to each sample point s. The real number x is called realization, or statistical sample of X()

Random variable

Distribution function

- Distribution function (DF) or Cumulative Density Function (CDF)
 - The probability distribution function for a random variable X is denoted by F_X(.)

 $F_X(x) = \operatorname{Prob}\{X < x\}$

$$F_X(-\infty) = 0$$

$$F_X(+\infty) = 1$$

ISP – Statistical Signal Processing

Distribution function

- Probability Density Function (PDF)
 - Non-negative function

$$f_X(x) \ge 0$$

Unit area

$$\int_{-\infty}^{+\infty} f_X(x) \, dx \quad = 1$$

PDF and CDF

$$f_X(x) = \frac{d}{dx} F_X(x)$$
$$F_X(x) = \int_{-\infty}^x f_X(y) dy$$

Gaussian density function

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$$

Normal density function

Joint distribution function

$$F_{XY}(x, y) = \operatorname{Prob}\{X < x \text{ and } Y < y\}$$

Joint density function

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

Independent random variables

$$F_{XY}(x, y) = F_X(x)F_Y(y)$$
$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

ISP – Statistical Signal Processing

Independnt variables

(a) No dependency

(b) Dependency

Independent variables only when you can describe X without the need of observing Y

Independnt variables

Multivariate normal distribution

Probabilities and ensembles

i	a_i	p_i	
1	a	0.0575	a
2	b	0.0128	b
3	С	0.0263	С
4	d	0.0285	d
5	е	0.0913	е
6	f	0.0173	f
7	g	0.0133	g
8	h	0.0313	h
9	i	0.0599	i
10	j	0.0006	j
11	k	0.0084	k
12	1	0.0335	1
13	m	0.0235	m
14	n	0.0596	n
15	0	0.0689	0
16	р	0.0192	Р
17	q	0.0008	P
18	r	0.0508	r
19	S	0.0567	S
20	t	0.0706	t
21	u	0.0334	u
22	v	0.0069	v
23	W	0.0119	W
24	х	0.0073	Х
25	У	0.0164	У
26	z	0.0007	Z
27	_	0.1928	_

From «The Frequently Asked Questions Manual for Linux» Outcome x is the value of a random variable $\mathcal{A}_X = \{a_1, a_2, \dots, a_i, \dots, a_I\}$ set of values $(x, \mathcal{A}_X, \mathcal{P}_X)$ $\mathcal{P}_X = \{p_1, p_2, \dots, p_I\}$ probabilities

 $P(x=a_i) = p_i \qquad \sum_{a_i \in \mathcal{A}_X} P(x=a_i) = 1$

Expected value

Expected value of a rv X

$$E\{X\} = \sum_{s \in S} X(s)P(s)$$

For continuous rvs

$$E\{X\} = \int_{s \in S} X(s) dP(s)$$

Expected value

• Linearity Z = aX+bY

$$E\{Z\} = aE\{X\} + bE\{Y\}$$

$$E\{g(X)\} = \int_{-\infty}^{+\infty} g(x) f_X(x) \, dx$$

First moment a function $f_{\chi}(x)$

$$E\{X\} = \int_{-\infty}^{+\infty} x f_X(x) \, dx$$

First moment - average value

$$m_X = E\{X\}$$

Second moment - standard deviation and variance $\sigma_X = \sqrt{E\{(X - m_X)^2\}}$

$$\sigma_X^2 = E\{(X - m_X)^2\} = E\{(X)^2\} - m_X^2$$

3rd central moment – skewness

$$\sigma_X^3 = E\{(X - m_X)^3\}$$

4th central moment – kurtosis

$$\sigma_X^4 = E\{(X - m_X)^4\}$$

Correlation

Correlation – second joint moment

$$R_{XY} = E\{XY\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_Y(y) f_X(x) dx dy$$

Covariance

$$K_{XY} = E\{(X - m_X)(Y - m_Y)\} = R_{XY} - m_X m_Y$$

Correlation coefficient

$$\rho = \frac{K_{XY}}{\sigma_X \sigma_y} \qquad -1 \le \rho \le +1$$

ISP – Statistical Signal Processing

Correlation

Correlation matrix – *n*-tuple of rvs $X = [X_1 ... X_k]^T$ $R_X = E\{X^T X\}$

Covariance matrix

$$K_X = R_X - \mu_X \mu_X^T$$

Discrete time random processes

- Process
 - Result of an experiment

Random processes

probabilistic models of ensembles of waveforms and sequences

Digital signal processing

- speech,
- visual signals (images, videos),
- sonar and radar,
- geophysical,
- astrophysical,
- biological signals, ...

Discrete time random processes

- Random process definition
 - A random process X(t, s) is a random function of time t and a sample-point variable s
 - X(t, .) is a function of sample points, i.e. a random variable
 - X(., s) is a function of time, i.e. a sample function

Intuition

- A random variable x becomes a function of the possible outcomes (values) s of an experiment and time t: x(s, t)
- The family of all such functions is called a random process, X(s, t)
- A random process becomes a random variable for fixed time

Ensemble and realization

- X(s, t) represents a family or ensemble of time functions
 - Convenient short form x(t) for specific waveform of the random process X(t)
 - Each member time function is called a realization
 - The complete collection of sample functions of a random process is called the ensemble

Ensemble and realization

Continuous-time random process

Discrete-time random process

Temporal processes

- Stationary process
 - "A stationary process (or strict(ly) stationary process or strong(ly) stationary process) is a stochastic process whose joint probability distribution does not change when shifted in time"
 - Parameters such as the mean and variance, if they are present, also do not change over time and do not follow any trends
- Cyclostationary process
 - "A cyclostationary process is a signal having statistical properties that vary cyclically with time"
 - A cyclostationary process can be viewed as multiple interleaved stationary processes
 - Examples: temperature, solar radiation, etc.

Stationary process

Stationary Time Series

Non-stationary Time Series

 $\{X_t\}$ stochastic process

 $F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau}) = F_X(x_{t_1},\ldots,x_{t_k})$ Joint distribution

Ergodicity

Ergodicity

- An ergodic dynamical system has the same behavior averaged over time as averaged over the space of all the system's states (phase space)
- Ergodicity is where the ensemble average equals the time average
- Examples
 - In physics, a system satisfies the ergodic hypothesis of thermodynamics
 - In statistics, a rp for which the time average of one sequence of events is the same as the ensemble average

Discrete ergodicity

A process is ergodic if the

mean is

$$\langle X(n) \rangle = \frac{1}{2N+1} \sum_{n=-N}^{N} X(n) = \mathbb{E} \{ X(n) \}$$

the autocorrelation is

$$\langle X(n)X(n-l)\rangle = \mathbb{E}\{X(n)X(n-l)\}$$

Two processes are joint ergodic

$$\langle X(n)Y(n-l)\rangle = \mathbb{E}\{X(n)Y(n-l)\}$$

Definitions

Mean

$$\mathbb{E}\{X(t)\}=m_X(t)$$

Autocorrelation

$$\mathbb{E}\{X(t)X(t+\tau)\}=R_X(t,t+\tau)$$

Autocovariance

 $\mathbb{E}\{[X(t_1) - m_X(t_1)][X(t_2) - m_X(t_2)]\} = K_X(t_1, t_2)$

Cross-correlation

 $\mathbb{E}\{X(t_1)Y(t_2)\}=R_{XY}(t_1,t_2)$

Cross-covariance

 $\mathbb{E}\{[X(t_1) - m_X(t_1)][Y(t_2) - m_Y(t_2)]\} = K_{XY}(t_1, t_2)$

Autocorrelation

distribution (histogram)

Cross-correlation function (XCF)

4 samples delay

cross-correlation function

- The HUGIN autonomous underwater vehicle •
- Wideband interferometric synthetic aperture sonar •
- Transmitter that insonies the seafloor with a LFM pulse •
- Array of receivers that collects the echoes from the seafloor
- The signal scattered from the seafloor is considered to be random •
- The signal consists of a signal part and additive noise •

ISP – Statistical Signal Processing

is the process stationary?

Two «similar» regions

Estimated PDF

is the probability density function Gaussian?

Moving Average Process (MA)

Many complicated random processes are well modeled as a linear operation on a simple process

$$Y_n = \sum_k X_{n-k} h_k$$

 X_n

Autoregressive process (AR)

Convolving the outputs to get the inputs instead of vice versa

ARMA

 $Y_n = \sum_{k=1}^{P} a_k Y_{n-k} + \sum_{k=0}^{Q} b_k X_{n-k}$

Estimation principles

A sequence x(n) is the realization of a random process

Mean $m_x = E[x_n] = \int_{-\infty}^{+\infty} xp_{x_n}(x,n)dx$

Estimated Mean

$$m_x = \frac{1}{N} \sum_{n=0}^{N-1} x(n)$$

Estimation principles

Variance

$$\sigma_x^2 = E\left[\left(x_n - m_x\right)^2\right]$$

Autocovariance

$$\gamma_{xx}(m) = E\left[\left(x_n - m_x\right)\left(x_{n+m}^* - m_x^*\right)\right]$$

Power Spectral Density

$$P_{xx}(\omega) = \sum_{m=-\infty}^{+\infty} \gamma_{xx}(m) e^{-j\omega m}$$

Autocorrelation is defined as the autocovariance with means equals to zero

Estimated autocorrelation

$$c_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x(n+m)$$

Estimated PSD

$$I_{N}(\omega) = \sum_{m=-(N-1)}^{N-1} c_{xx}(m) e^{-j\omega m}$$

Spectrum estimation techniques

DTFT of a sequence x(n)

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x(n) e^{-j\omega n}$$

Periodogram

$$I_{N}(\omega) = \frac{1}{N} \left| X(e^{j\omega}) \right|^{2} = \frac{1}{N} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} x(l) x(m) e^{j\omega m} e^{-j\omega l}$$

ISP – Statistical Signal Processing

Periodogram

 $x(n) = \sin(2\pi \cdot 262 \cdot n) + \sin(2\pi \cdot 440 \cdot n) + 0.1 \cdot randn(n)$

Periodogram

Fenologian Fower opecal Density Estimate

Considerations

- The Periodogram
 - We have problems with increasing the N
 - The variance does not approach zero as the data length N increases
 - The periodogram is not a consistent estimator (i.e. converges in some sense to the true value)
 - Why does the variance not decrease with increasing N?
 Increasing N means increasing the number of individual frequencies (instead of increasing the accuracy of each frequency)

Bartlett's method

A sequence x(n) is divided in K segments of M samples (N = KM)

$$x^{(i)}(n) = x(n + iM - M) \qquad 0 \le n \le M - 1; 1 \le i \le K$$

K Periodograms are calculated

$$I_{M}^{(i)}(\omega) = \frac{1}{M} \left| \sum_{n=0}^{M-1} x^{(i)}(n) e^{-j\omega n} \right|^{2}$$

Estimation of the spectrum

$$B_{xx}(\omega) = \frac{1}{K} \sum_{i=1}^{K} I_M^{(i)}(\omega)$$

Welch's method

A window w(n) is applied

$$J_{M}^{(i)}(\omega) = \frac{1}{MU} \left| \sum_{n=0}^{M-1} x^{(i)}(n) w(n) e^{-j\omega n} \right|^{2}$$

$$U = \frac{1}{M} \sum_{n=0}^{M-1} w^2(n)$$

$$B_{xx}^{\omega}(\omega) = \frac{1}{K} \sum_{i=1}^{K} J_{M}^{(i)}(\omega)$$

Welch

Estimated Periodogram

MUSIC

- Very important are the methods based on the decomposition by eigenvectors and eigenvalues
- Methods
 - Pisarenko
 - MUltiple Signal Classification (MUSIC)
 - Estimation of Signal Parameters via Rational Invariance Technique (ESPRIT)
- Applications
 - Spectral estimation
 - Direction Of Arrival (DOA)

■ The sequence x(n) is

$$x(n) = \sum_{i=1}^{p} A_i e^{jn\omega_i} + w(n)$$

Autocorrelation matrix

$$r_x(k) = \sum_{i=1}^p P_i e^{jk\omega_i} + \sigma_{\omega}^2 \delta(k)$$

$$P_i = \left|A_i\right|^2$$

MUSIC

We write the autocorrelation matrix as

$$\mathbf{R}_{x} = \mathbf{R}_{s} + \mathbf{R}_{n} = \sum_{i=1}^{p} P_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{H} + \sigma_{w}^{2} \mathbf{I}$$

$$\mathbf{e}_{i} = \left[1, e^{j\omega_{i}}, e^{j2\omega_{i}}, \dots, e^{j(M-1)\omega_{i}}\right]$$

The p principal components span the signal space

$$P_{MUSIC}(e^{j\omega}) = \frac{1}{\sum_{i=p+1}^{M} \left| \mathbf{e}^{H} \mathbf{v}_{i} \right|^{2}}$$

Example

Estimated Periodogram

