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Intelligent Signal Processing

Statistical Signal Processing
Angelo Ciaramella
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Ingredients of probability
Random experiment
A set of outcomes
The probabilities associated to these outcomes
We cannot predict with certainty the outcome of the 
experiment

We can predict «averages»!

Philosophical aspects of probability
We want a probabilistic description of the physical problem
We believe that there’s a statistical regularity that describes
the physical phenomenon

Probability
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Probability

Cannot predict how much rain, but the average suggests not to plant in 
Arizona
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Probability

Result of tossing a coin is not predictable, but the average 53% tells me it is
fair coin
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Sample space
Experiment

process of observing the state at t = t0
Sample point

outcome of the experiment

Sample space
set S of all possible sample points

Event
event A in S that occurs (happens)

Sample space
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Sample space

s1, s2 and s3: sample points
A, B: events
S: sample space
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Probability space
The sample space S is a probability space i to every
event A there is a number P(A) that fulls

0 ≤ 𝑃 𝐴 ≤ 1
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 , 𝑖𝑓𝑓 𝐴 ∩ 𝐵 = ∅
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
𝑃 𝑆 = 1

Probability space
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Conditional probability

Bayes’ theorem

Conditional probability 

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
=

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
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Forward problem
Given a specied number of white and black balls in a 
box, what is the probability of drawing a black ball?

Reverse problem
Given that one or more balls have been drawn, what
can be said about the number of white and black balls
in the box?

Bayes’ theorem
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Example
The department is formed by 60% men and 40% 
women. Men always wear trousers, women wear trousers
or skirts in equal numbers. Which is the probability of 
meeting a girl with trousers is?

A - I see a girl
B - A person is wearing trousers
The probability is

Bayes’ theorem

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵) =
0.5 × 0.4

0.5×0.4 + 1×0.6 = 0.25
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Random variable
A random variable is a real-valued function X(.) of 
sample points in a sample space:

a function that assigns a real number x = X(s) to each
sample point s. The real number x is called realization, or 
statistical sample of X()

Random variable

Representation of a random variable
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Random variable

Discrete random variables

One-to-one map Many-to-one map
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Distribution function (DF) or Cumulative Density
Function (CDF) 

The probability distribution function for a random 
variable X is denoted by FX(.)

Distribution function

𝐹! 𝑥 = Prob 𝑋 < 𝑥

𝐹! −∞ = 0
𝐹! +∞ = 1
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Probability Density Function (PDF) 
Non-negative function

Unit area

PDF and CDF  

Distribution function

𝑓! 𝑥 ≥ 0

J
"#

$#
𝑓!(𝑥) 𝑑𝑥 = 1

𝑓! 𝑥 =
𝑑
𝑑𝑥
𝐹! 𝑥

𝐹! 𝑥 = J
"#

%
𝑓! 𝑦 𝑑𝑦
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Gaussian density function

Normal density function

𝑓! 𝑥 =
1
2𝜋𝜎&

𝑒 " %"' !

&(!
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Joint distribution function

Joint density function

Independent random variables

Several random variables

𝐹!) 𝑥, 𝑦 = Prob 𝑋 < 𝑥 𝑎𝑛𝑑 𝑌 < 𝑦

𝑓!) 𝑥, 𝑦 =
𝜕&

𝜕𝑥𝜕𝑦
𝐹!)(𝑥, 𝑦)

𝐹!) 𝑥, 𝑦 = 𝐹! 𝑥 𝐹) 𝑦

𝑓!) 𝑥, 𝑦 = 𝑓! 𝑥 𝑓) 𝑦
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Independnt variables

Independent variables only when you can describe X without the
need of observing Y
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Independnt variables

Multivariate normal distribution

𝑋~𝑁(𝜇, Σ)
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Probabilities and ensembles 

From «The Frequently Asked Questions Manual for Linux»

Outcome x is the value of a random variable

set of values

probabilities
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Expected value of a rv X

For continuous rvs

Expected value

𝐸 𝑋 =V
*∈,

𝑋 𝑠 𝑃(𝑠)

𝐸 𝑋 = J
*∈,
𝑋 𝑠 𝑑𝑃(𝑠)
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Linearity Z = aX+bY

Function of a rv

Expected value

𝐸 𝑔(𝑋) = J
"#

$#
𝑔 𝑥 𝑓!(𝑥) 𝑑𝑥

𝐸 𝑍 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌
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First moment a function fX(x)

Moments

𝐸 𝑋 = J
"#

$#
𝑥𝑓!(𝑥) 𝑑𝑥
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First moment - average value

Second moment - standard deviation and 
variance

3rd central moment – skewness

4th central moment – kurtosis

Higher moments

𝑚! = 𝐸 𝑋

𝜎! = 𝐸 𝑋 −𝑚! &

𝜎!& = 𝐸 𝑋 −𝑚!
& = 𝐸 𝑋 & −𝑚!

&

𝜎!- = 𝐸 𝑋 −𝑚!
-

𝜎!. = 𝐸 𝑋 −𝑚!
.
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Correlation – second joint moment

Covariance

Correlation coefficient

Correlation

𝑅!) = 𝐸 𝑋𝑌 = J
"#

$#
J
"#

$#
𝑥𝑦𝑓) 𝑦 𝑓! 𝑥 𝑑𝑥𝑑𝑦

𝐾!) = 𝐸 (𝑋 −𝑚!)(𝑌 − 𝑚)) = 𝑅!) −𝑚%𝑚/

𝜌 =
𝐾!)
𝜎!𝜎/

− 1 ≤ 𝜌 ≤ +1
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Correlation matrix – n-tuple of rvs

Covariance matrix

Correlation

𝑹𝑿 = 𝐸 𝑿𝑻𝑿

𝑿 = 𝑋2…𝑋3 4

𝑲𝑿 = 𝑹𝑿 − 𝝁𝑿𝝁𝑿𝑻
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Process
Result of an experiment

Random processes
probabilistic models of ensembles of waveforms and 
sequences

Digital signal processing 
speech,
visual signals (images, videos),
sonar and radar,
geophysical,
astrophysical,
biological signals, ...

Discrete time random processes
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Random process – definition
A random process X(t, s) is a random function of time t and 
a sample-point variable s
X(t, .) is a function of sample points, i.e. a random variable
X(. , s) is a function of time, i.e. a sample function

Intuition
A random variable x becomes a function of the possible
outcomes (values) s of an experiment and time t: x(s , t)
The family of all such functions is called a random process, 
X(s , t)
A random process becomes a random variable for fixed
time

Discrete time random processes
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X(s , t) represents a family or ensemble of time 
functions

Convenient short form x(t) for specific waveform of the 
random process X(t)
Each member time function is called a realization
The complete collection of sample functions of a 
random process is called the ensemble

Ensemble and realization
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Ensemble and realization

Continuous-time random process Discrete-time random process
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Stationary process
“A stationary process (or strict(ly) stationary process or 
strong(ly) stationary process) is a stochastic process whose 
joint probability distribution does not change when shifted in 
time”
Parameters such as the mean and variance, if they are 
present, also do not change over time and do not follow any 
trends

Cyclostationary process
“A cyclostationary process is a signal having statistical 
properties that vary cyclically with time”
A cyclostationary process can be viewed as multiple 
interleaved stationary processes
Examples: temperature, solar radiation, etc.

Temporal processes
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Stationary process

stochastic process

Joint distribution



IS
P 

–
St

at
ist

ic
al

 S
ig

na
lP

ro
ce

ss
in

g

Ergodicity
An ergodic dynamical system has the same behavior 
averaged over time as averaged over the space of all 
the system’s states (phase space)
Ergodicity is where the ensemble average equals the 
time average
Examples

In physics, a system satisfies the ergodic hypothesis of 
thermodynamics
In statistics, a rp for which the time average of one sequence
of events is the same as the ensemble average

Ergodicity 
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A process is ergodic if the 
mean is

the autocorrelation is 

Two processes are joint ergodic 

Discrete ergodicity 
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Mean

Autocorrelation

Autocovariance

Cross-correlation

Cross-covariance

Definitions
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Autocorrelation

signal distribution (histogram)

autocorrelation
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Cross-correlation function (XCF)

source signals

cross-correlation function

4 samples delay



IS
P 

–
St

at
ist

ic
al

 S
ig

na
lP

ro
ce

ss
in

g
Sonar

• The HUGIN autonomous underwater vehicle
• Wideband interferometric synthetic aperture sonar
• Transmitter that insonies the seafloor with a LFM pulse
• Array of receivers that collects the echoes from the seafloor
• The signal scattered from the seafloor is considered to be random
• The signal consists of a signal part and additive noise
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Sonar
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Sonar

is the process stationary?



IS
P 

–
St

at
ist

ic
al

 S
ig

na
lP

ro
ce

ss
in

g
Sonar

Two «similar» regions
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Sonar

Estimated PDF

is the probability density function Gaussian?
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Many complicated random processes are well
modeled as a linear operation on a simple
process

Moving Average Process (MA)
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Convolving the outputs to get the inputs instead of 
vice versa

Autoregressive process (AR)
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ARMA
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A sequence x(n) is the realization of a random 
process

Mean

Estimated Mean

Estimation principles
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Variance 

Autocovariance

Power Spectral Density 

Estimation principles
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Autocorrelation is defined as the autocovariance
with means equals to zero

Estimated autocorrelation

Estimated PSD

Estimation principles
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Spectrum estimation techniques
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DTFT of a sequence x(n)

Periodogram

Periodogram
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Periodogram

x(n) = sin(2π ⋅262 ⋅n)+ sin(2π ⋅ 440 ⋅n)+ 0.1⋅ randn(n)

Source signal
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Periodogram

Estimated Periodogram
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The Periodogram
We have problems with increasing the N 
The variance does not approach zero as the data 
length N increases
The periodogram is not a consistent estimator (i.e. 
converges in some sense to the true value)
Why does the variance not decrease with increasing N?

Increasing N means increasing the number of individual 
frequencies (instead of increasing the accuracy of each 
frequency)

“smoothed” Periodograms are defined

Considerations
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A sequence x(n) is divided in K segments of M 
samples (N = KM)

K Periodograms are calculated 

Bartlett’s method
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Estimation of the spectrum

Bartlett’s method
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A window w(n) is applied 

Welch’s method
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Welch

Estimated Periodogram



IS
P 

–
St

at
ist

ic
al

 S
ig

na
lP

ro
ce

ss
in

g

Very important are the methods based on the 
decomposition by eigenvectors and eigenvalues

Methods
Pisarenko
MUltiple Signal Classification (MUSIC)
Estimation of Signal Parameters via Rational Invariance 
Technique (ESPRIT)

Applications
Spectral estimation
Direction Of Arrival (DOA)

MUSIC
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The sequence x(n) is

Autocorrelation matrix 

MUSIC

x(n) = Aie
jnωi +w(n)

i=1

p

∑

rx (k) = Pie
jkωi +σω

2δ(k)
i=1

p

∑

Pi = Ai
2
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We write the autocorrelation matrix as 

The p principal components span the signal space

MUSIC

Rx =Rs +Rn = Pieiei
H +σ w

2I
i=1

p

∑

ei = 1,e
jωi ,e j2ωi ,...,e j (M−1)ωi"# $%

PMUSIC (e
jω ) = 1

eHvi
2

i=p+1

M

∑
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Example

Estimated Periodogram


