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Probability

¢ Ingredients of probability
B Random experiment
B A set of outcomes
e The probabilities associated to these outcomes

B We cannot predict with certainty the outcome of the
experiment

We can predict «averagesy!

¢ Philosophical aspects of probability

e We want a probabilistic description of the physical problem

B We believe that there’s a statistical regularity that describes

ISP — Statistical Signal Processing

the physical phenomenon

VAt
i



Probability

Ave{age = 9176 inches '
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Cannot predict how much rain, but the average suggests not to plant in
Arizona
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Probability
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Sample space

e Sample space
B Experiment
process of observing the state at t = t,
B Sample point
outcome of the experiment
B Sample space
set S of all possible sample points

B Event

event A in S that occurs (happens)
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Sample space
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S1, So and s3: sample points
A, B: events
S: sample space




Probability space
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» Probability space

e The sample space S is a probability space i to every
event A there is a number P(A) that fulls

0<P(4) <1
P(AUB) = P(A) + P(B), iff ANB=0¢
P(AUB) = P(A) + P(B) — P(ANB)
P(S) =1



Conditional probability

¢ Conditional probability

P(ANB)
P(B)

P(A|B) =

» Bayes’ theorem

P(B|A)P(A)  likelihood X prior
P(B) "~ marginal likelihood

P(A|B) =
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Bayes' theorem
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» Forward problem

¥ Given a specied number of white and black balls in a
box, what is the probability of drawing a black ball?

e Reverse problem

¥ Given that one or more balls have been drawn, what
can be said about the number of white and black balls
in the box?



Bayes' theorem
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¢ Example

» The department is formed by 60% men and 40%
women. Men always wear frousers, women wear trousers
or skirts in equal numbers. Which is the probability of
meeting a girl with trousers is¢

E A-lsee a girl
e B - A person is wearing trousers

B The probability is

P(BIAP(A)  05%x04

— = 0.25
P(B) 0.5%0.4 + 1x0.6

P(A|B) =



Random variable

¢ Random variable

B A random variable is a real-valued function X(.) of
sample points in a sample space:

a function that assigns a real number x = X(s) to each

sample point s. The real number x is called realization, or
statistical sample of X()
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Representation of a random variable

real line

L& n.

X3 = X(s3) x2= X(s3) x)=X(s))



Random variable

One-to-one map
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Sx = {z1,22,3,...}

S = {s1,52,83,...}

Q
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Discrete random variables

Many-to-one map
X (s3)

Sx = {z1,z2,23,...}

8§ = {s1,52,83,...}



Distribution function

# Distribution function (DF) or Cumulative Density
Function (CDF)

e The probability distribution function for a random
variable X is denoted by Fy(.)

Fy(x) = Prob{X < x}

b Fy(x) Fx(— ) =0

ISP — Statistical Signal Processing
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Distribution function

¢ Probability Density Function (PDF)

® Non-negative function

fx(x) =0

r Unit area
+ 00

fx(x)dx =1

— 00

e PDF and CDF

d
f () = — Fx (x)
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Fy(x) = f_x fx(y)dy “/
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Gaussian density function

fx(x) = L e(_%)

2102

Gaussian density f X(x)
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Several random variables

¢ Joint distribution function
Fyy(x,y) = Prob{X < xand Y < y}
» Joint density function

62
fxy(x,y) = 9x0y Fyy(x,y)

» Independent random variables

Fxy(x,y) = Fx(x)Fy(y)
fxy(x,y) = fx)fy )
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Independnt variables
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(a) No dependency (b) Dependency

Independent variables only when you can describe X without the
need of observing Y
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Independnt variables

Multivariate normal distribution
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Probabilities and ensembles

18
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1 a 0.0575
2 b 0.0128
3 ¢ 0.0263
4 d 0.0285
5 e 0.0913
6 £ 00173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 1 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y  0.0164
26 z 0.0007
27 —  0.1928
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From «The Frequently Asked Questions Manual for Linux»

Outcome x is the value of a random variable

Ax ={a1,a2,...,ai,...,ar} set of values

(z,Ax,Px)

Px = {p1.p2,-..,p1} probabilities

Yoaeax Ple=a;) =1



Expected value
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» Expected value of arv X

E{X} = 2 X(s)P(s)

SES

¥ For continuous rvs

E{X}=j X(s)dP(s)

SES



Expected value

e Linearity Z = aX+bY

E{Z} = aE{X} + DE{Y}

¢ Function of a rv

+ 00

E{g(X)} = j 900 fe(x) dx
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Moments

e First moment a function f,(x)

E{X} = j_ Xfy(x) dx
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Higher moments

» First moment - average value
my = E{X}
¢ Second moment - standard deviation and

variance oy = JE{(X — mx)?2}

o = E{(X —mx)?} = E{(X)?} — m}

¢ 3rd central moment — skewness

U):? = E{(X — mX)B}
¥ 4th central moment — kurtosis

ISP — Statistical Signal Processing

ox = E{(X —mx)*}
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Correlation

# Correlation — second joint moment
400 400
Rxy = E{XY} = f j xyfy ) fx(x)dxdy
¢ Covariance
Kyy = E{(X —myx)(Y —my)} = Ryy — m,m,

¥ Correlation coefficient

ISP — Statistical Signal Processing
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Correlation

¢ Correlation matrix — n-tuple of rvs X = [X; ... X, ]”
Ry = E{XTX}
¢ Covariance matrix

Kx = Ry — uxux

ISP — Statistical Signal Processing

P

L.



Discrete time random processes

e Process
B Result of an experiment

¢ Random processes

k probabilistic models of ensembles of waveforms and
sequences

» Digital signal processing

B speech,

# visual signals (images, videos),
sonar and radar,
geophysical,
astrophysical,

K" g
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biological signals, ...



Discrete time random processes

» Random process — definition

B A random process X(t, s) is a random function of time t and
a sample-point variable s

e X(t,.) is a function of sample points, i.e. a random variable

B X(., s)is a function of time, i.e. a sample function

¥ Intuition

¥ A random variable x becomes a function of the possible
outcomes (values) s of an experiment and time t: x(s , t)

¥ The family of all such functions is called a random process,
X(s , 1)

B A random process becomes a random variable for fixed
time

ISP — Statistical Signal Processing
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Ensemble and realization

¥ X(s,t) represents a family or ensemble of time
functions

# Convenient short form x(t) for specific waveform of the
random process X(t)

# Each member time function is called a realization

B The complete collection of sample functions of a
random process is called the ensemble

PN AN A A AN PR\

Realisations
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Ensemble and realization
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Temporal processes

¢ Stationary process

B “A stationary process (or strict(ly) stationary process or
strong(ly) stationary process) is a stochastic process whose
joint probability distribution does not change when shifted in
time”

¥ Parameters such as the mean and variance, if they are
present, also do not change over time and do not follow any
trends

¢ Cyclostationary process

B “A cyclostationary process is a signal having statistical
properties that vary cyclically with time”

B A cyclostationary process can be viewed as multiple
interleaved stationary processes

e Examples: temperature, solar radiation, etc.

ISP — Statistical Signal Processing
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Stationary process

Stationary Time Series
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Ergodicity

» Ergodicity
B An ergodic dynamical system has the same behavior

averaged over time as averaged over the space of all
the system’s states (phase space)

k Ergodicity is where the ensemble average equals the
time average

¢ Examples
In physics, a system satisfies the ergodic hypothesis of
thermodynamics

In statistics, a rp for which the time average of one sequence
of events is the same as the ensemble average

ISP — Statistical Signal Processing
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Discrete ergodicity

ISP — Statistical Signal Processing
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» A process is ergodic if the

B mean is

1

N
X(n) = 575 D X(n) = E{X(n)}

n=—N

p the autocorrelation is

(X(n)X(n—1)) =E{X(n)X(n—1)}
» Two processes are joint ergodic

(X(n)Y(n=1)) =E{X(n)Y(n—1)}



Definitions
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¢ Mean
E{X(t)} = mx(t)

Avutocorrelation
E{X(t)X(t+7)} = Rx(t,t + 1)

¢ Autocovariance
E{[X(t1) — mx(t1)][X(t2) — mx(t2)]} = Kx(t1, t2)

Cross-correlation
E{X(t1) Y(t2)} = Rxv(t1, t2)

Cross-covariance

E{[X(t1) — mx(t1)][Y(r2) — my(t2)]} = Kxv(t1, t2)



Autocorrelation
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Cross-correlation function (XCF)

4 samples delay

'40 26 4'0 6I0 Sb 100 Sample Cross Correlation Function
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Sonar

L.
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Pulse positions

The HUGIN autonomous underwater vehicle

Wideband interferometric synthetic aperture sonar

Transmitter that insonies the seafloor with a LFM pulse

Array of receivers that collects the echoes from the seafloor

The signal scattered from the seafloor is considered to be random
The signal consists of a signal part and additive noise



Sonar

Sonar raw data, single channel, real part
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Sonar
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Sonar

Sonar raw data, single channel, real part
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Sonar
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is the probability density function Gaussian?



Moving Average Process (MA)

¥ Many complicated random processes are well
modeled as a linear operation on a simple
process

Yo =)  Xo—hu
k

i

+ — Ya= Zk hie Xk

B>
\
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Autoregressive process (AR)

» Convolving the outputs to get the inputs instead of

vice versd
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Estimation principles

» A sequence x(n) is the realization of a random
process

¥ Mean

m,_ = E[xn]: jxpxn (x,n)dx

¥ Estimated Mean

ISP — Statistical Signal Processing

o
o AN
PSS



Estimation principles
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¢ Variance

o’ =E_(x —mx)zﬂ

X

¥ Autocovariance

*

7o (m)=E|(x, —m )x..,

—m

*

X

)

» Power Spectral Density

PL(@)= 37, (me ™




Estimation principles

r Autocorrelation is defined as the autocovariance
with means equals to zero

¢ Estimated autocorrelation

N‘m‘l

c. (m)y=— Z x(n)x(n+m)

¢ Estimated PSD

ISP — Statistical Signal Processing

L= Y. (me’™

m=—(N-1)
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Spectrum estimation techniques

Spectrum
estimation

v
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Periodogram

¥ DTFT of a sequence x(n)

X () = %x(rz)e—j o

¢ Periodogram

1N1

Iy(@)= %\X (") =— 2 S x(l)x(m)e™e

lOmO
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Periodogram
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x(n)=smn(2mx-262-n)+sin(2x-440-n)+0.1-randn(n)
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Periodogram
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Considerations

u®
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» The Periodogram

¥ We have problems with increasing the N

¥ The variance does not approach zero as the data
length N increases

¥ The periodogram is not a consistent estimator (i.e.

converges in some sense to the true value)

# Why does the variance not decrease with increasing N2

Increasing N means increasing the number of individual
frequencies (instead of increasing the accuracy of each
frequency)

¢ “smoothed” Periodograms are defined



Bartlett's method

K
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» A sequence x(n) is divided in K segments of M

samples (N = KM)

x(n)=x(n+iM - M)

0<n<M-L11<i<K

» K Periodograms are calculated

@)=

1
M|~

M -1 . .
Z x (n)e "
n=0

2




Bartlett's method
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¢ Estimation of the spectrum

B (0)=
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Welch's method

» A window w(n) is applied

2

T @)=

1 MZI 0 .
— > x(m)w(n)e™’™"
MU "=

lM_l 2 0] 1 & I
U:M;w(n) — Bxx(w)zfgw(m)
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Welch
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MUSIC
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» Very important are the methods based on the
decomposition by eigenvectors and eigenvalues

¥ Methods

® Pisarenko
# MUItiple Signal Classification (MUSIC)

k Estimation of Signal Parameters via Rational Invariance
Technique (ESPRIT)

» Applications

B Spectral estimation
e Direction Of Arrival (DOA)



MUSIC

K
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» The sequence x(n) is

)4
x(n)= EAiej”‘"" +w(n)
i=1

¥ Autocorrelation matrix

)4
r (k)= Epief"wf +028(k)
=1

Pi =|Ai|2




MUSIC

L.

ISP — Statistical Signal Processing

P

r We write the autocorrelation matrix as

)4
R, =R, +R, =) Pee! +0.1
i=1

l

— .
e =[1,e’“”,e’ % el )w’]

» The p principal components span the signal space

Pyysic(e™) = M

2
2"

i=p+l




Example
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