

Intelligent Signal Processing z Transform

Angelo Ciaramella

z Transform

Continuous time systems

- The Laplace Transform can be considered a generalization of the Fourier Transform
- Discrete time systems
 - The z Transform can be considered a generalization of the Discrete Time Fourier Transform

z Transform

z Transform

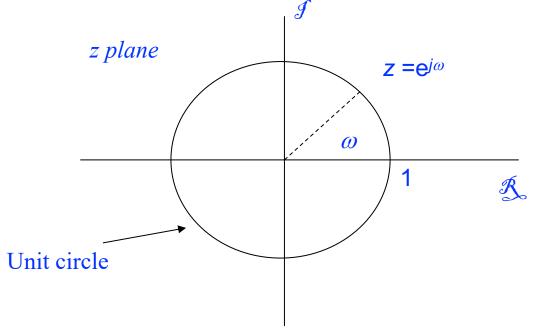
- use a generic complex number
- when $z = e^{j\omega}$ a DTFT is obtained
- contains further details on the nature of the signal

The z Transform (bilateral) of a sequence x(n)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

right unilateral

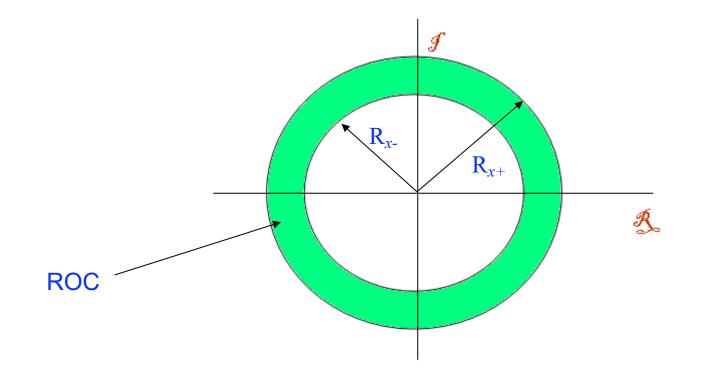

Multimedia Systems – z Transform

z Transform and DTFT

• Setting
$$z = re^{j\omega}$$
 we obtain

$$X(re^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n) \left(re^{j\omega} \right)^{-n} = \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j\omega n}$$

For r = 1 (|z| = 1) the z Transform becomes the DTFT



Multimedia Systems – z Transform

Region of Convergence

- Given a sequence x(n) the set of z values for which the z Transform converges is named
 - Region of Convergence

Region of Convergence

Properties

- The outer boundary is a circle or can be extended to infinity
- The inner border is a circle and can be extended to become the origin

If the ROC

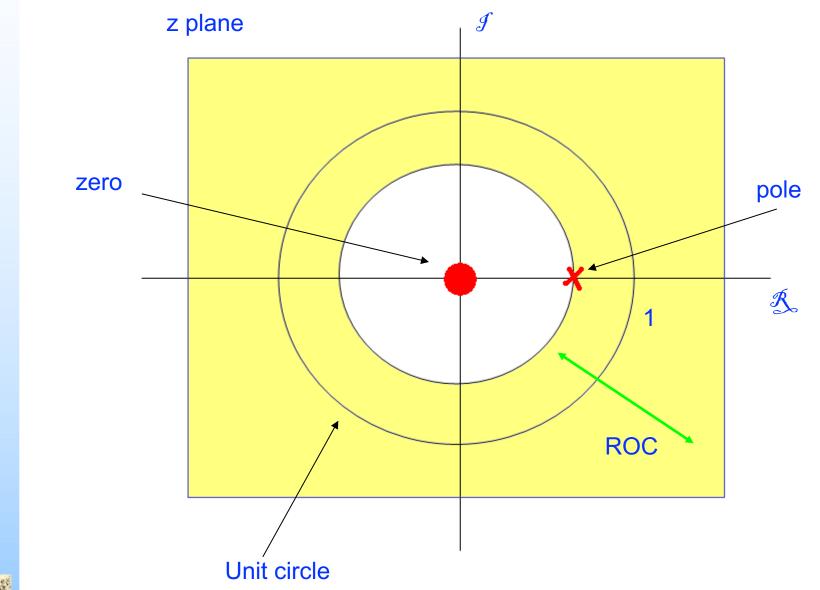
- includes the unit circle, this implies convergence of the ztransform also the Fourier transform converges
- does not include the unit circle the Fourier transform it is not absolutely convergent

Multimedia Systems –

z Transform

Zeros and poles

An important class is the rational function (polynomials ratio in z)


$$X(z) = \frac{P(z)}{Q(z)}$$

- the zeros of the system are roots of the numerator polynomial
- the poles of the system are roots of the denominator polynomial

Transform

Multimedia Systems – z

Example of ROC

8

Convergence properties

- The ROC must be a connected region
- The ROC is a ring or a disc in the z-plane centered at the origin
- The Fourier Transform of x(n) converges absolutely if and only if the ROC of the z Transform of x(n) comprises the unit circle
- The ROC does not contain any pole and is bounded by poles or zeros or infinite
- If x(n) is a sequence of finite duration the ROC is the entire zplane except for possible z = 0 and $z = +\infty$
- If x (n) is the monolateral right the ROC is the outside of a circle (pole amplitude increased up to (possibly) $+\infty$)
- If x (n) is monolateral left the ROC is the inside of a circle (pole different from zero with lower amplitude up (possibly) to 0)
- If x (n) is the two-sided ROC consists of a ring in the z plane limited from the inside and from the outside by a pole and in accordance with the property 3 contains no pole

