

Intelligent Signal Processing

Discrete Systems

Angelo Ciaramella

Automatic control systems

- Automated controls play an essential role in the technological progress of human civilization
 - E.g., washing machines, refrigerators, ovens, automatic pilots of airplanes, robots, etc.

- A real world problem can be described by a System
 - Complex
 - e.g., planetary system
 - Simple
 - e.g., control system of the water temperature

Automatic control systems

Element

it is the smallest part of a system that may be treated as an entity

Block

set of items that can be grouped for describing a I/O relation

Control system

- set of physical components arranged to control themselves or other systems
- Automatic control system
 - regulates itself without the need of a human intervention
- Open Loop Control System
 - the control action is independent from the exit
- Closed Loop Control System
 - the control action is influenced by the exit

Feedback

- In a closed loop control system, the output signal is brought back into the input
 - e.g., driving

SISO system

Single-Input and Single-Output input and output variables

MIMO system

Multi-Input and Multi-Output input and output variables

Linear System

the I/O relations can be represented by linear functions
 e.g., Ohm's law (V = R x I)

Time-Invariant System

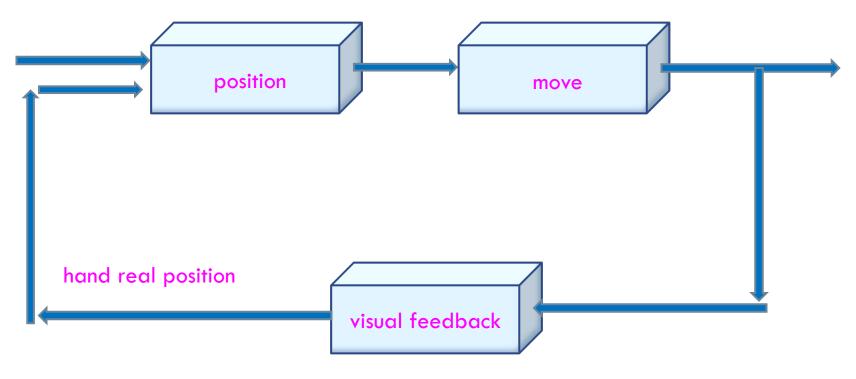
- system with constant coefficients
 - e.g., system spring-mass and dissipation

Time-Variant System

- system with variable coefficients
 - e.g., rocket burning fuel

Example: taking a glass ...

hand desired position



System for taking a glass.

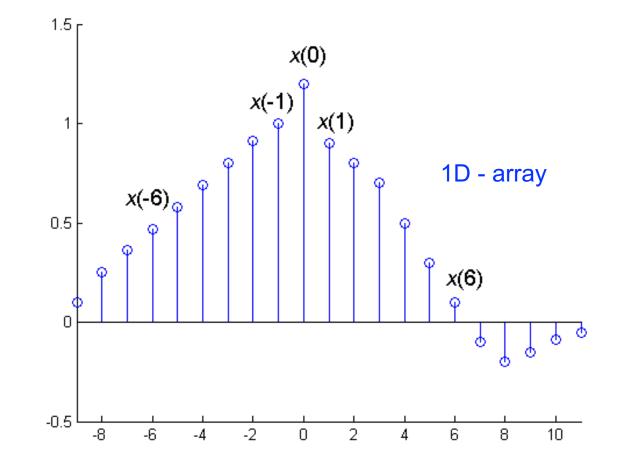
ISP – Discrete Systems

- Discrete-Time Systems process signals represented by sequences
 - obtained directly from a system
 - after digitizing Time-Invariant systems

Sequence x

$$\mathbf{x} = \left\{ x(n) \right\} \qquad -\infty < n < \infty$$

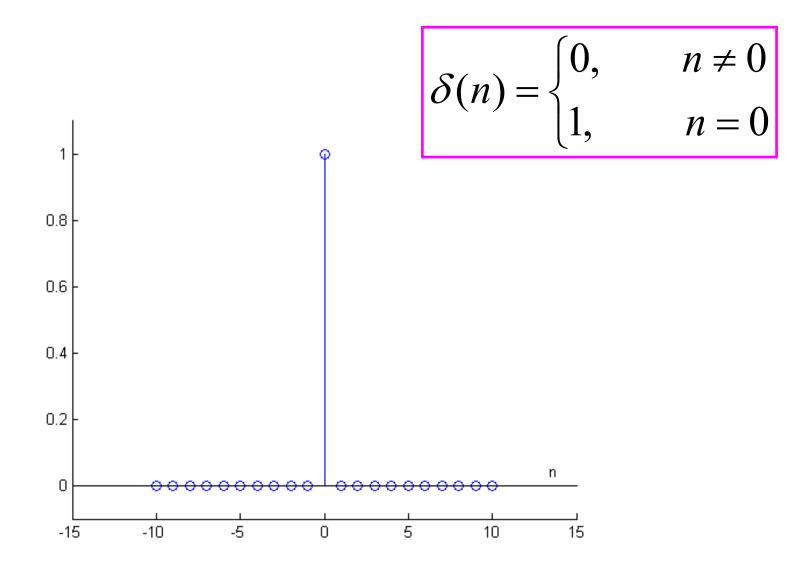
Discrete sequences



Discrete sequences

- Types of sequences
 - unit impulse signal
 - unit step function
 - real values exponential function
 - sinusoidal function

Unit impulse signal



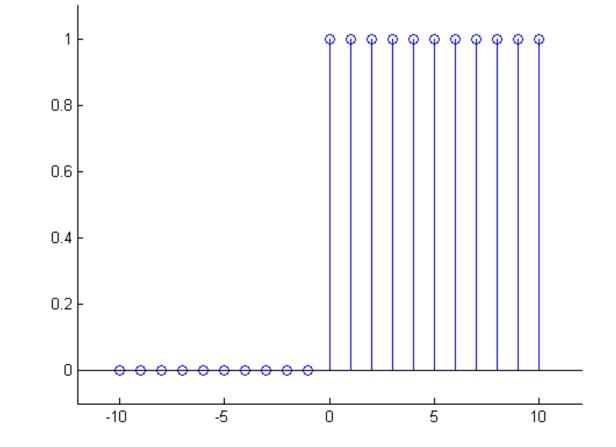
ISP – Discrete Systems

Unit step function

$$u(n) = \begin{cases} 1, & n \ge 0\\ 0, & n < 0 \end{cases}$$

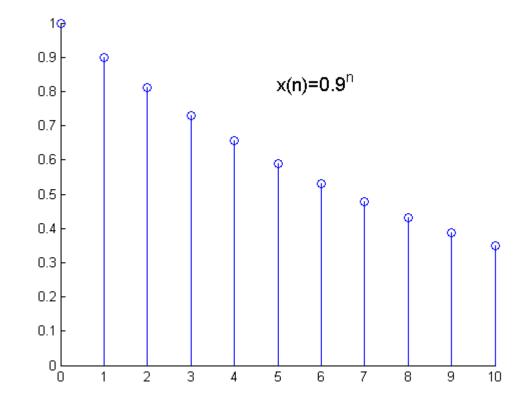
$$u(n) = \sum_{k=-\infty}^n \delta(k)$$

$$\delta(n) = u(n) - u(n-1)$$

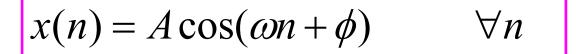


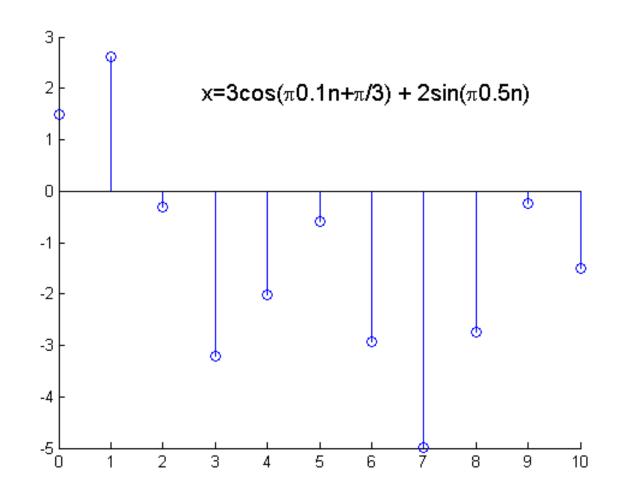
Real exponential function

$$x(n) = a^n \qquad \forall n \ a \in \Re$$

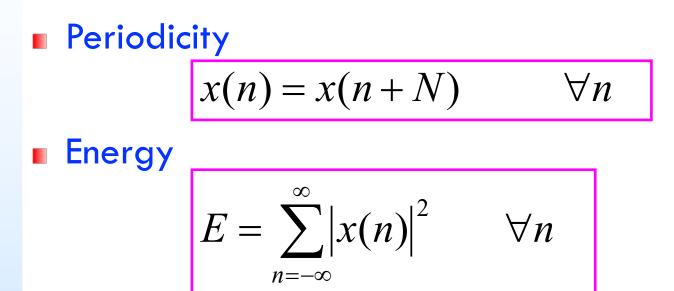


Sinusoidal function





Basics operations



Operations

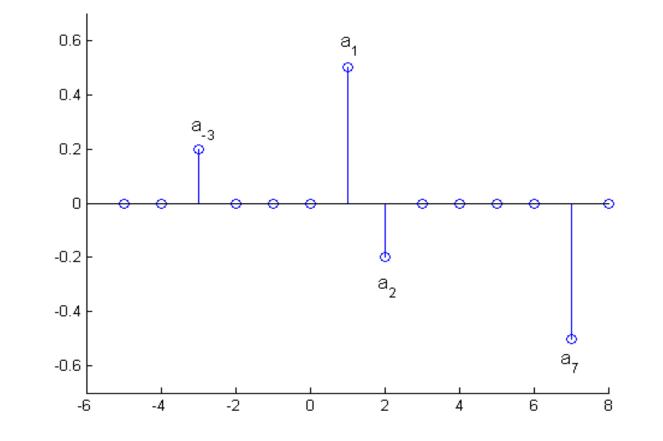
$$x \cdot y = \{x(n)y(n)\}$$
product $x + y = \{x(n) + y(n)\}$ summation $\alpha \cdot x = \{\alpha x(n)\}$ scalar product

Que de

ISP – Discrete Systems

Unit impulse and sequences

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

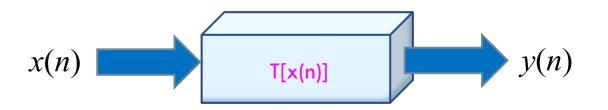


 $x(n) = a_{-3}\delta(n+3) + a_1\delta(n-1) + a_2\delta(n-2) + a_7\delta(n-7)$

Systems

- Mathematically
 - unique transformation mapping an input sequence x(n)
 into an output y(n)

$$y(n) = T[x(n)]$$



LTI systems

- Linear Time-Invariant (LTI) theory
 - comes from applied mathematics
 - has direct applications in
 - NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas
- It investigates the response of a linear and timeinvariant system to an arbitrary input signal

Time-invariant systems

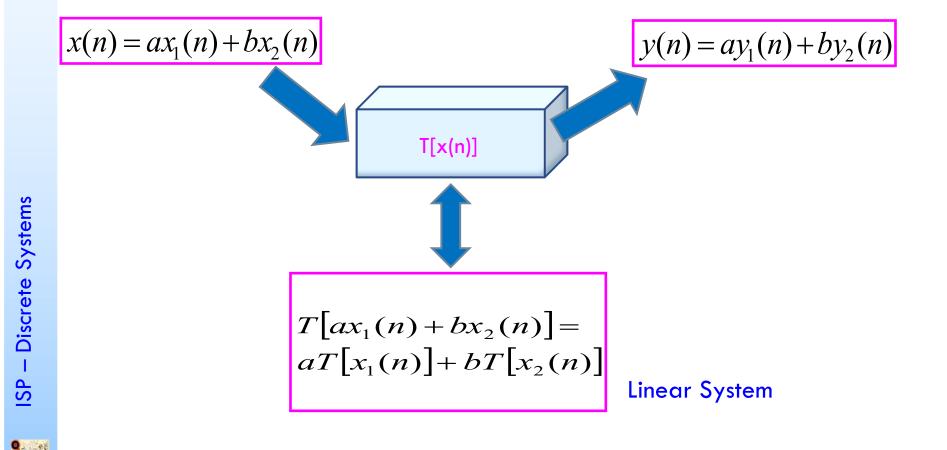
Time-Invariant condition

- If y(n) is the response to x(n) then y(n-k) is the response to x (n-k)
- k is a positive or negative integer

$$x(n-k)$$
 $T[x(n-k)]$ $y(n-k)$

Time-Invariant System

The class of Linear Systems is defined by the principle of superposition



Impulse Response

A linear system can be completely characterized by its Impulse Response

$$y(n) = T[x(n)] = T\left[\sum_{k=-\infty}^{\infty} Convolution \\ x(k)\delta(n-k)\right]$$
$$y(n) = \sum_{k=-\infty}^{\infty} T[x(k)\delta(n-k)] = \sum_{k=-\infty}^{\infty} x(k)T[\delta(n-k)] = \sum_{k=-\infty}^{\infty} x(k)h_k(n)$$
Impulse Response, $h_k(n) = h(k-n)$

The convolution operation is denoted as

$$y(n) = x(n) * h(n)$$

Equivalently we can write

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = h(n) * x(n)$$

Linear difference equation

We consider a system with M inputs and N outputs

$$\sum_{k=0}^{N} a_{k} y(n-k) = \sum_{r=0}^{M} b_{r} x(n-r)$$

Equilibrium

The output y at time n corresponds to

$$y(n) = -\sum_{k=1}^{N} \frac{a_k}{a_0} y(n-k) + \sum_{r=0}^{M} \frac{b_r}{a_0} x(n-r)$$

Infinite Impulse Response (IIR) Filter

FIR filter

If the output depends only from the inputs

$$y(n) = -\sum_{k=1}^{N} \frac{a_{k}}{a_{0}} (n-k) + \sum_{r=0}^{M} \frac{b_{r}}{a_{0}} x(n-r)$$

Finite Impulse Response (FIR) Filter

$$h(n) = \begin{cases} \frac{b_n}{a_0} \\ 0 \end{cases}$$

n = 0, 1, ..., M

altrove

