

Intelligent Signal Processing

Introduction to the course

Angelo Ciaramella

The course

6 training credits (CFU)

- Part 1 (3 CFU)
 - Teacher Angelo Ciaramella
- Part 2 (3 CFU)
 - Teacher Danilo Greco

Theoretical part

- Frontal lectures
- Practices
 - theoretical
 - Iaboratory

The course

Examination

- Practical project
 - Topic chosen by the student
 - Term paper
- Oral interview
 - Presentation
 - Project simulation

Lecture timetable

Lecture Timetable

- Tuesday
 - 4:00 p.m. 6:00 p.m. Lab 2

Wednesday

2:00 p.m. - 4:00 p.m. - Lab 1

Office hours

Tuesday

2:00 p.m. - 4:00 p.m.

"On demand"

<mark>–</mark> via e-mail

ISP-Introduction to the course

Objectives of the course

The course provides the basic theoretical and practical foundations for Signal Processing (SP) using Artificial Intelligence based methodologies

Signal Processing

- Audio, Images and Video processing
- Information theory

Advanced Signal Processing

- Signal denoising
- Sparse coding and Compressive Sensing
- Blind Source Separation
- Acoustic beamforming
- Direction of Arrival

Artificial Intelligence

 Machine Learning, Deep Learning and Computational Intelligence based models

Teaching materials

- Recommended books
 - Signal Processing
 - Discrete-time signal processing, Alan V. Oppenheim, R. W. Schafer; J.R. Buck, Upper Saddle River, N.J., Prentice Hall, 1999, ISBN 0-13-754920-2
 - Probability, Random Variables and Stochastic Processes, Papoulis, Athanasios; Pillai, S. Unnikrishna (4° ed.) (2002), Boston: McGraw Hill. ISBN 0-07-366011-6
 - Information Theory, Inference and Learning Algorithms, MacKay, David J. C., Cambridge: Cambridge University Press., 2003, ISBN 9780521642989
 - Artificial Intelligence
 - **Fuzzy Logic with Engineering Applications, T. J. Ross, 4th Edition, 2016**
 - Pattern Recognition and Machine Learning, C. M. Bishop, Springer, 2006
 - Deep Learning, I. Goodfellow, Y. Bengio, A. Courville, MIT Press, 2016
 - Further readings will be suggested later

Lecture notes

e-learning material

Introduction to Multimedia

- Basics of Audio, Image and Video
- Data representations
- Signal processing
 - Signal Digitization
 - Signal Frequency Transforms
 - Filtering
 - Audio Sound Effects
 - Audio Synthesis

Stochastic Processes

- Spectral estimation
- Filtering and prediction
- Kalman filters

Information theory

- Basics of Information Theory and Inference
- Integrated information theory
- Brief hint on
 - Shannon's Source Coding Theorem
 - Shannon's Noisy-Channel Coding Theorem

Basics of Compression

- JPEG compression for Images
- MPEG compression for Audio and Video

Advanced Signal Processing

- Al based Denoising
 - ECG and EEG

Sparse coding and Compressive Sensing

- Packet Loss in Streaming
- Bioinformatics
- Blind Source Separation
- Acoustic beamforming
- Direction of Arrival

ISP-Introduction to the course

- Soft Computing based Methodologies
 - Fuzzy Logic for Information Retrieval
 - Neuro-Fuzzy based Systems for DSP
 - Music Emotion Recognition

Practical applications

- Python
 - scipy.signal
- Colab

