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Introduction

r Why sampling?

E approximate many sums and integrals

gradient of the log partition function of an undirected
model

k frain a model that can sample from the training
distribution
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Monte Carlo Sampling

* When a sum or an integral cannot be computed
exactly

B approximate it using Monte Carlo sampling

r Suppose
s=> pla)f(x) = Ey[f(x)]



Monte Carlo Sampling

¥ Drawing n samples zW,... z®
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Monte Carlo Sampling
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Markov Chain Monte Carlo Methods

¥ Markov chain
¥ Updating state x
¥ Random state x and transition distribution T(x’ | x)

 T(x'| x) probability that a random update will go to
state x’ if it starts in state x

¢ Run infinitely many Markov chains in parallel
» States drawn from some distribution gl)(x)

¥ Goal g'(x) converging to p(x)

(t+1) Z (] I | ])
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Markov Chain Monte Carlo Methods

» Transition operator

¥ over all the different Markov chains run in
parallel shifts

“burning in” the Markov chain

') = At vlt) = Atp(0)

columns of A (stochastic matrix) represents a probability distribution

vt = (Vdiag()\)V_l)t v0 = Vdiag A\ )t V10
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Markov Chain Monte Carlo Methods

» Convergence

vV — Av = v Eigenvector equation

» If we have chosen T correctly, then the stationary
distribution g will be equal to the distribution p we
wish to sample from
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Sampling

» Two basic approaches

k derive T from a given learned p,, 4.

# directly parametrize T and learn it

its stationary distribution implicitly defines the p,, 4. of
interest

¥ Commonly use of Markov chains

B draw samples from an energy-based model defining a
distribution p,,,4e (X)
B we want the g(x) for the Markov chain to be p, ,qe1 (X)

To obtain the desired q(x), we must choose an appropriate
T(x" | x)
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Gibbs sampling

r Special case of the Metropolis-Hastings algorithm

¥ Markov chain

e samples from p,, 4.((X)

e T(x' | x)is accomplished by selecting one variable x;
and sampling it from p,, 4. cOnditioned on its neighbors
in the undirected graph G defining the structure of the
energy-based model
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Gibbs sampling

¢ Distribution from which we wish to sample

¥ Each step of the Gibbs sampling procedure

k replacing the value of one of the variables by a value
drawn from the distribution of that variable conditioned
on the values of the remaining variables
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Gibbs sampling
Gibbs Sampling

l. Initialize {z; :i=1,..., M}
2. Forr=1,...,T:
() _(7) (7)

— Sample z( ) o (2 |2y "y 23 7, .. ZM)
~ Sample 25"V ~ p(zo]2{7Y, zé”,.. 2r)-

(T+1) (T+1) (t+1) _(7) T)
— Sample z; "~ p(2zlz; 250 250 2p)
— Sample Z§w+1) (ZM|Z§T+1)aZ§T+1)’--~, g/rj-+11))

p(z*)qr(z|z*) _ P(2k |23 )P(255 )P (2K |254,)
P(z)qr(z*|z)  p(2k|z\k)p(2\k)P(25|2\k)
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Intractable partition functions

» Valid probability distribution

1
Z(0)

/ p(x)dx

> ().
&£r
» This operation is intractable for many interesting
models

p(x;0) = p(x;0)

¥ Partition function Z
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Intractable partition functions

» Normalized probability distribution

1

p(x;0) = 7(0)

p(x;0)

¢ Techniques used for training and evaluating models
Log-Likelihood Gradient

Stochastic Maximum Likelihood

Markov Chain Monte-Carlo sampling

Contrastive Divergence (CD)

Pseudolikelihood

Score Matching and Ratio Matching

Noise-Contrastive Estimation

Annealed Importance Sampling
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Log-Likelihood Gradient

¥ Gradient of the likelihood

Ve logp(x;0) = Vg log p(x:0) — Vg log Z(0)

basis for a variety of Monte Carlo methods for approximately maximizing
the likelihood of models with intractable partition functions

Vg log Z = Ex.px) Ve log p(x)

burning in a set of Markov chains from a random initialization
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MCMC

Algorithm 18.1 A naive MCMC algorithm for maximizing the log-likelihood
with an intractable partition function using gradient ascent.

Set €, the step size, to a small positive number.

Set k, the number of Gibbs steps, high enough to allow burn in. Perhaps 100 to
train an RBM on a small image patch.

while not converged do

Sample a minibatch of m examples {x(l), ey x("‘)} from the training set.
g+ LY ™ Velogp(x';0).
Initialize a set of m samples {X{!),..., X(™)} to random values (e.g., from

a uniform or normal distribution, or possibly a distribution with marginals

5 matched to the model’s marginals).
_§ fori=1tok do

é" for j =1 tom do

> %) « gibbs update(X7)).

%— end for

= end for

& g+ g— Y™, Valogp(x®; ).
N 0 +— 0 + eg.

= end while
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Contrastive Divergence

Algorithm 18.2 The contrastive divergence algorithm, using gradient ascent as
the optimization procedure.

Set €, the step size, to a small positive number.
Set k, the number of Gibbs steps, high enough to allow a Markov chain sampling
from p(x;0) to mix when initialized from pgata. Perhaps 1-20 to train an RBM
on a small image patch.
while not converged do

Sample a minibatch of m examples {x“), e ,x(’")} from the training set.

g —,31 3", Ve log p(x{"); @).

fori=1tomdo

x() ¢ x{9),
5 end for
2 fori=1to k do
7 for j =1 tom do |
= %9) « gibbs update(;’é])).
o) _
A= end for
?EL end for
3 g+ g— 4 Y, Velogp(x);0).
| 0« 0 + eg.
- end while
=
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Score Matching

1
L(z,0) = 5||V210g Pmodel (%3 0) — Va log pdata()|[3

1
'](9) - _QEpdata(m)L(w’ 9)
0" = mbin J(0)
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