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Machine Learning (part II)

Sampling Methods
Angelo Ciaramella
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Why sampling?
approximate many sums and integrals

gradient of the log partition function of an undirected
model

train a model that can sample from the training 
distribution

Introduction
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When a sum or an integral cannot be computed
exactly

approximate it using Monte Carlo sampling

Suppose

Monte Carlo Sampling
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Drawing n samples 

Monte Carlo Sampling

Unbiased

for the law of large number           i.i.d
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Variance

Central limit theorem
converges to a normal distribution

Monte Carlo Sampling

converge

mean

variance
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Markov chain 
Updating state x 
Random state x and transition distribution T(x’|x)
T(x’|x) probability that a random update will go to 
state x’ if it starts in state x

Run infinitely many Markov chains in parallel
States drawn from some distribution q(t)(x)
Goal q(t)(x) converging to p(x)

Markov Chain Monte Carlo Methods
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Transition operator

over all the different Markov chains run in 
parallel shifts

Markov Chain Monte Carlo Methods

columns of A (stochastic matrix) represents a probability distribution

A is guaranteed to have only one eigenvector with eigenvalue 1

“burning in” the Markov chain
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Convergence

If we have chosen T correctly, then the stationary
distribution q will be equal to the distribution p we
wish to sample from

Markov Chain Monte Carlo Methods

Eigenvector equation
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Two basic approaches
derive T from a given learned pmodel

directly parametrize T and learn it
its stationary distribution implicitly defines the pmodel of 
interest

Commonly use of Markov chains
draw samples from an energy-based model defining a 
distribution pmodel (x)
we want the q(x) for the Markov chain to be pmodel (x)

To obtain the desired q(x), we must choose an appropriate 
T(x’ | x)

Sampling
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Special case of the Metropolis-Hastings algorithm

Markov chain
samples from pmodel(x) 
T (x’ | x ) is accomplished by selecting one variable xi

and sampling it from pmodel conditioned on its neighbors
in the undirected graph G defining the structure of the 
energy-based model

Gibbs sampling
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Distribution from which we wish to sample

Each step of the Gibbs sampling procedure
replacing the value of one of the variables by a value
drawn from the distribution of that variable conditioned
on the values of the remaining variables

Gibbs sampling



M
L 

–
Sa

m
pl

in
g

M
et

ho
ds

Gibbs sampling
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Valid probability distribution

Partition function Z

This operation is intractable for many interesting
models

Intractable partition functions
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Normalized probability distribution

Techniques used for training and evaluating models
Log-Likelihood Gradient
Stochastic Maximum Likelihood
Markov Chain Monte-Carlo sampling
Contrastive Divergence (CD)
Pseudolikelihood
Score Matching and Ratio Matching
Noise-Contrastive Estimation
Annealed Importance Sampling
Bridge Sampling

Intractable partition functions
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Gradient of the likelihood

Log-Likelihood Gradient

basis for a variety of Monte Carlo methods for approximately maximizing
the likelihood of models with intractable partition functions

burning in a set of Markov chains from a random initialization
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MCMC 
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Contrastive Divergence
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Score Matching


