

Machine Learning (part II)

Deep Generative Models

Angelo Ciaramella

Deep Belief Networks

Deep belief networks (DBN)

- first non-convolutional models to successfully admit training of deep architectures
- Deep belief networks demonstrated that deep architectures can be successful
- Generative models with several layers of latent variables
- Latent variables are typically binary
- Visible units may be binary or real
- no intra-layer connections
 - Usually, every unit in each layer is connected to every unit in each neighboring layer
- construct more sparsely connected DBNs
- The connections between the top two layers are undirected
- A DBN with only one hidden layer is a Restricted Boltzmann Machine (RBM)

¥

Deep Generative Models

BM

connectionist approach to learning arbitrary probability distributions over binary vectors

- Powerful when
 - not all the variables are observed
 - Intent variables act similarly to hidden units in MLP
- Energy function

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{v}^{\top}\boldsymbol{R}\boldsymbol{v} - \boldsymbol{v}^{\top}\boldsymbol{W}\boldsymbol{h} - \boldsymbol{h}^{\top}\boldsymbol{S}\boldsymbol{h} - \boldsymbol{b}^{\top}\boldsymbol{v} - \boldsymbol{c}^{\top}\boldsymbol{h}$$

Learning

intractable partition function

Restricted Boltzmann Machines

- Restricted Boltzmann Machines (RBM)
 - Energy based model (named Harmonium, 1986)
 - undirected probabilistic graphical model
 - a layer of observable variables and a single layer of latent variables
 - may be stacked (one on top of the other) to form deeper models

Energy function

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\mathsf{T}}\boldsymbol{v} - \boldsymbol{c}^{\mathsf{T}}\boldsymbol{h} - \boldsymbol{v}^{\mathsf{T}}\boldsymbol{W}\boldsymbol{h}$$

$$P(\mathbf{v} = \mathbf{v}, \mathbf{h} = \mathbf{h}) = \frac{1}{Z} \exp\left(-E(\mathbf{v}, \mathbf{h})\right)$$

$$Z = \sum_{\boldsymbol{v}} \sum_{\boldsymbol{h}} \exp\left\{-E(\boldsymbol{v}, \boldsymbol{h})\right\}$$

RBM training

training models that have intractable partition functions

- CD
- SML
- Ratio matching
- •••

DBNs

The connections between the top two layers are undirected.

The connections between all other layers are directed

A deep belief network is a hybrid graphical model involving both directed and undirected connections

Probability distribution

$$P(\mathbf{h}^{(l)}, \mathbf{h}^{(l-1)}) \propto \exp\left(\mathbf{b}^{(l)^{\top}} \mathbf{h}^{(l)} + \mathbf{b}^{(l-1)^{\top}} \mathbf{h}^{(l-1)} + \mathbf{h}^{(l-1)^{\top}} \mathbf{W}^{(l)} \mathbf{h}^{(l)}\right),$$

$$P(h_i^{(k)} = 1 \mid \mathbf{h}^{(k+1)}) = \sigma\left(b_i^{(k)} + \mathbf{W}_{:,i}^{(k+1)^{\top}} \mathbf{h}^{(k+1)}\right) \forall i, \forall k \in 1, \dots, l-2,$$

$$P(v_i = 1 \mid \mathbf{h}^{(1)}) = \sigma\left(b_i^{(0)} + \mathbf{W}_{:,i}^{(1)^{\top}} \mathbf{h}^{(1)}\right) \forall i.$$

$$\mathbf{v} \sim \mathcal{N}\left(oldsymbol{v};oldsymbol{b}^{(0)} + oldsymbol{W}^{(1) op}oldsymbol{h}^{(1)},oldsymbol{eta}^{-1}
ight)$$

Real-valued visible units

Learning

Training an RBM to maximize by CD or SML

 $\mathbb{E}_{\mathbf{v} \sim p_{\text{data}}} \log p(\mathbf{v})$

Second RBM maximize

$$\mathbb{E}_{\mathbf{v} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{h}^{(1)} \sim p^{(1)}(\mathbf{h}^{(1)}|\mathbf{v})} \log p^{(2)}(\mathbf{h}^{(1)})$$

procedure can be repeated indefinitely on many layers

Improve classification models

weights from the DBN and use them to define an MLP

$$\boldsymbol{h}^{(1)} = \sigma \left(\boldsymbol{b}^{(1)}_{i} + \boldsymbol{v}^{\top} \boldsymbol{W}^{(1)} \right).$$
$$\boldsymbol{h}^{(l)} = \sigma \left(\boldsymbol{b}^{(l)}_{i} + \boldsymbol{h}^{(l-1)\top} \boldsymbol{W}^{(l)} \right) \forall l \in 2, \dots, m,$$

Training MLP for classification tasks (discriminative finetuning)

Deep Belief Networks

unsupervised, layer-wise, greedy pretraining

Deep Boltzmann Machines

entirely undirected model

Deep Boltzmann Machines

joint probability

$$P\left(\boldsymbol{v},\boldsymbol{h}^{(1)},\boldsymbol{h}^{(2)},\boldsymbol{h}^{(3)}\right) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(-E(\boldsymbol{v},\boldsymbol{h}^{(1)},\boldsymbol{h}^{(2)},\boldsymbol{h}^{(3)};\boldsymbol{\theta})\right)$$

Energy function

$$E(\boldsymbol{v}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(2)}, \boldsymbol{h}^{(3)}; \boldsymbol{\theta}) = -\boldsymbol{v}^{\top} \boldsymbol{W}^{(1)} \boldsymbol{h}^{(1)} - \boldsymbol{h}^{(1)\top} \boldsymbol{W}^{(2)} \boldsymbol{h}^{(2)} - \boldsymbol{h}^{(2)\top} \boldsymbol{W}^{(3)} \boldsymbol{h}^{(3)}$$

Learning

- challenge of an intractable partition function
- challenge of an intractable posterior distribution

Jointly Training DBM

Generative Adversarial Networks

- game theoretic scenario
 - generator network must compete against an adversary

$$x = g(z; \theta^{(g)})$$

Generator network

 $d(\boldsymbol{x}; \boldsymbol{\theta}^{(d)})$

Discriminator network

probability that x is a real training example rather than a fake sample drawn from the model

Generative Adversarial Networks

Zero-sum game

 $v(\theta^{(g)}, \theta^{(d)})$ payoff of the discriminator

to maximize its own payoff

 $g^* = \operatorname*{arg\,min}_g \max_d v(g,d)$

$$w(\boldsymbol{\theta}^{(g)}, \boldsymbol{\theta}^{(d)}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log d(\boldsymbol{x}) + \mathbb{E}_{\boldsymbol{x} \sim p_{\text{model}}} \log (1 - d(\boldsymbol{x}))$$

This drives the discriminator to attempt to learn to correctly classify samples as real or fake. Simultaneously, the generator attempts to fool the classifier into believing its samples are real.

Images generated by GANs trained on the LSUN dataset

