

Machine Learning (part II)

Representation Learning

Angelo Ciaramella

Introduction

information processing

- tasks can be very easy or very difficult depending on how the information is represented
- what makes one representation better than another?
- feedforward networks trained by supervised learning as performing a kind of representation learning
 - Hidden layers
 - classes that were not linearly separable in the input features may become linearly separable in the last hidden layer

Unsupervised pretraining

greedy layer-wise unsupervised pretraining

- Representation learned for one task can sometimes be useful for another task
- Each layer is pretrained using unsupervised learning (e.g., RBM)
- Taking the output of the previous layer and producing as output a new representation of the data
- optimizes each piece of the solution independently
- Iayer-wise because these independent pieces are the layers of the network
- supervised learning task
 - regularizer and a form of parameter initialization

Protocol

Algorithm 15.1 Greedy layer-wise unsupervised pretraining protocol. Given the following: Unsupervised feature learning algorithm \mathcal{L} , which takes a training set of examples and returns an encoder or feature function f. The raw input data is X, with one row per example and $f^{(1)}(X)$ is the output of the first stage encoder on X and the dataset used by the second level unsupervised feature learner. In the case where fine-tuning is performed, we use a learner \mathcal{T} which takes an initial function f, input examples X (and in the supervised fine-tuning case, associated targets Y), and returns a tuned function. The number of stages is m.

$$f \leftarrow \text{Identity function}$$

 $\tilde{X} = X$
for $k = 1, ..., m$ do
 $f^{(k)} = \mathcal{L}(\tilde{X})$
 $f \leftarrow f^{(k)} \circ f$
 $\tilde{X} \leftarrow f^{(k)}(\tilde{X})$
end for
if fine-tuning then
 $f \leftarrow \mathcal{T}(f, X, Y)$
end if
Return f

Transfer learning

Idea

- what has been learned in one setting (i.e., distribution P₁) is exploited to improve generalization in another setting (say distribution P₂)
- For example
 - we may learn about one set of visual categories
 - cats and dogs
 - learn about a different set of visual categories
 - ants and wasps

Idea

- The task remains the same between each setting, but the input distribution is slightly different
- Very successful for sentiment analysis

Concept drift

form of transfer learning due to gradual changes in the data distribution over time

Extreme forms

One- shot learning

one labeled example of the transfer task

Zero-shot learning

no labeled examples are given at all for the zero-shot learning task

Extreme forms

