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Machine Learning (part II)

Autoencoders
Angelo Ciaramella
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Autoencoder
neural network that is trained to attempt to copy its 
input to its output

Modern autoencoders
have generalized the idea of an encoder and a 
decoder beyond deterministic functions to stochastic 
mappings

Introduction
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Principal Component Analysis (PCA) is a statistical 
technique

Dimensionality reduction
Lossy data compression
Feature extraction
Data visualization

It is also known as the Karhunen-Loeve transform   

PCA can be defined as the principal subspace 
such that the variance of the projected data is 
maximized 

Principal Component Analysis
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The second-order methods are the most popular 
methods to find a linear transformation

This methods find the representation using only the 
information contained in the covariance matrix of 
the data vector x

PCA is widely used in signal processing, statistics, 
and neural computing

Second-Order methods
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Principal Components

In a linear projection down to one dimension, the optimum choice  of projection, 
in the sense of minimizing the sum-of-squares error, is obtained first subtracting 
off the mean of the data set, and then projecting onto the first eigenvector u1 of 
the covariance matrix.
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We introduce a complete orthonormal set of D-
dimensional basis vectors (i=1,…,D)

Because this basis is complete, each data point 
can be represented by a linear combination of the 
basis vectors 

Projection error minimization
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We can write also that 

Our goal is to approximate this data point using a  
representation involving a restricted number M < 
D of variables corresponding to a projection onto 
a lower-dimensional subspace

Projection error minimization

( )å
=

=
D

i

T
nn ii

1
uuxx j

T
nnj ux=a

åå
+==

+=
D

Mi
i

M

i
nin ii

bz
11

~ uux



M
L 

–
A

ut
oe

nc
od

er
s

As our distortion measure we shall use the squared 
distance between the original point and its 
approximation averaged over the data set so that 
our goal is to minimize  

The general solution is obtained by choosing the 
basis to be eigenvectors of the covariance matrix 
given by 

Projection error minimization
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Auto-associative MLP
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Auto-associative MPL

Non-liner units 
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Auto-associative MLP

Mapping of the non-linear auto-associative MLP
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Autoencoder

General structure of an autoencoder

reconstruction
input

internal representation or code

encoder decoder
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Undercomplete autoencoder
code dimension is less than the input dimension
representation forces the autoencoder to capture the 
most salient features of the training data

Loss function

PCA subspace
decoder linear 
L is mean squared error

Autoencoder



M
L 

–
A

ut
oe

nc
od

er
s

14

Regularized autoencoders
use a loss function that encourages the model to have
other properties besides the ability to copy its input to 
its output
Examples

Sparsity of the representation
Smallness of the derivative of the representation
Robustness to noise
Robusstness to missing inputs
Generative models

Helmholtz machine
Variatiaonal autonecoder

Regularized autoencoder
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Sparse penalty

used to learn features for another task such as
classification

Sparse autoencoder

typically
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Joint distribution

Log-likelihood

Maximizing

Sparse autoencoder
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e.g., Laplace prior

Sparse autoencoder

Way of approximately training a generative model
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Minimization

Denoising autoencoder

Noisy version of x
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Denoising autoencoder
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Denoising autoencoder

denoising autoencoder is trained to map a corrupted data
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Minimization

Penalizing Derivatives

Forces the autoencoder to learn features that capture information 
about the training distribution

contractive autoencoder
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Depth
using deep encoders and decoders offers many
advantages
One major advantage of non-trivial depth is that the 
universal approximator theorem guarantees
yield much better compression than corresponding
shallow or linear autoencoders

Depth
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Depth

Stochastic autoencoder

Both the encoder and the decoder are not simple functions but instead
involve some noise injection, meaning that their output can be seen as
sampled from a distribution
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Encouraging the derivatives of f to be as small as
possible

Contractive atuoencoders

Frobenius norm (sum of squared elements)

Jacobian matrix
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Contractive atuoencoders

learn tangent vectors that show how the image changes as
objects in the image gradually change pose

largest singular values are interpreted as the tangent directions that the 
contractive autoencoder has learned
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data concentrates around a low-dimensional
manifold

tangent planes
data concentrates around a low-dimensional manifold
At a point x on a d-dimensional manifold, the tangent
plane is given by d basis vectors that span the local
directions of variation allowed on the manifold

Manifold learning
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Tangent plane

one-dimensional manifold
in 784-dimensional space

translating it vertically

vertical translation
defines a coordinate
along a one-dimensional
manifold

2D PCA

tangent direction
In image space
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Reconstruction

If the autoencoder learns a reconstruction function that is invariant to 
small perturbations near the data points, it captures the manifold
structure of the data.
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Inference as optimization
Approximate inference algorithms may then be derived
by approximating the underlying optimization problem
Aim

Evidence lower bound (ELBO)

Variational Autoencoders

observed variables latent variables

arbitrary probability distribution
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Canonical defintion

Variational Autoencoders
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Varational Autoenoders

Variational Autoencoders

distribution generator network

joint log-likelihood 
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Training
train a parametric encoder that produces the 
parameters of q
maximizing L with respect to the parameters of the 
encoder and decoder
All of the expectations in L may be approximated by 
Monte Carlo sampling

Variational Autoencoders
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Interesting properties

algorithm discovered two independent factors of variation present in 
images of faces: angle of rotation and emotional expression


