
!

Machine Learning (part II)

Recurrent
Neural Networks

Angelo Ciaramella

M
L

–
Re

cu
rr

en
tN

N
s

2

RNNs
family of neural networks for processing sequential
data
specialized for processing a sequence of values

x(1), . . . , x(τ)

early ideas found in machine learning and statistical
models of the 1980s

sharing parameters across different parts of a model

Recurrent Neural Networks

M
L

–
Re

cu
rr

en
tN

N
s

3

Related idea
use of convolution across a 1-D temporal sequence

time-delay neural networks

RNNs
minibatches of sequences
may also be applied in two dimensions across spatial
data such as images

Recurrent Neural Networks

M
L

–
Re

cu
rr

en
tN

N
s

Adaptive filter
The parameters are estimated

learning algorithm

An error function is used
e.g., Linear Artificial Neural Network (Adaline)

Adaptive filters

M
L

–
Re

cu
rr

en
tN

N
s

Hospital
ECG (electrocardiogram) corrupted by noise at 50 Hz
(electricity)
The current can vary between 47 Hz and 53 Hz
A filter for the elimination of static noise at 50 Hz could
give errors
An adaptive filter can learn from the current shape of noise

Helicopter
Pilot speaking with noise from rotating propeller
The noise has not a spectrum well defined
An adaptive filter learns the shape of the noise
The noise can be subtracted from the signal for only the
pilot's voice

Adaptive filters

M
L

–
Re

cu
rr

en
tN

N
s

Adaline

M
L

–
Re

cu
rr

en
tN

N
s

Adaptive filters

)()()(nvndnx +=

target signal

noise

input

FIR structure

)()(~ nnd n xw ×=

[]pnnnn www ,...,, 10=w

[])(),...,1(),()(pnxnxnxn --=xnnn www D+=+1

Learning algorithm (e.g., LMS and descent
gradient)

)(ˆ)()(ndndne -=

source signal

M
L

–
Re

cu
rr

en
tN

N
s

8

Related idea
formalize the structure of a set of computations
introduce the idea of an operation

an operation is a simple function of one or more variables

Computational graphs

M
L

–
Re

cu
rr

en
tN

N
s

9

Computational graphs

Graph using the × operation to compute z = xy

M
L

–
Re

cu
rr

en
tN

N
s

10

Computational graphs

logistic regression prediction

intermediate expressions

M
L

–
Re

cu
rr

en
tN

N
s

11

Computational graphs

Minibatch of inputs X

M
L

–
Re

cu
rr

en
tN

N
s

12

Computational graphs

More than one operation of a linear regression model

M
L

–
Re

cu
rr

en
tN

N
s

13

Artificial Neural Networks
exhibit temporal dynamic behavior

can use their internal state (memory) to process
sequences of inputs

models sequences
Time series
Natural Language
Speech
Convert non-sequences to sequences, eg: feed an image as
a sequence of pixels!

RNNs

M
L

–
Re

cu
rr

en
tN

N
s

14

Feed-forward NN

M
L

–
Re

cu
rr

en
tN

N
s

15

Temporal dipendencies

M
L

–
Re

cu
rr

en
tN

N
s

16

Reber Grammar
Problem that can not be solved without memory

M
L

–
Re

cu
rr

en
tN

N
s

17

Jordan’s sequential network

M.I. Jordan NN (1986).

M
L

–
Re

cu
rr

en
tN

N
s

18

Jordan’s sequential network

Jordan NN has been applied to categorize a class of English syllables.

M
L

–
Re

cu
rr

en
tN

N
s

19

Simple recurrent network

Elman RNN (1990).

M
L

–
Re

cu
rr

en
tN

N
s

20

Simple recurrent network

Elman RNN. Basic RNN structure called “Vanilla” RNN

M
L

–
Re

cu
rr

en
tN

N
s

21

Simple recurrent network

Elman SRN. A total of 60,000 randomly generated strings are used
for training.

M
L

–
Re

cu
rr

en
tN

N
s

22

Applications of RNNs

Image Captioning

.. and Trump

Write like Shakespeare

RNN Generated Music
RNN Generated Eminem
rapper

… and more!

Twitterbot
I'm a Neural Network trained on Trump's
transcripts. Priming text in []s. Donate
(http://www.gofundme.com/deepdrumpf)
to interact! Created by @hayesbh.

https://t.co/o4pye5WflK
https://twitter.com/hayesbh

M
L

–
Re

cu
rr

en
tN

N
s

23

Dynamical system (reccurrent expression)

Example

Recurrent Neural Networks

State of the system

Unfolded computational graph

M
L

–
Re

cu
rr

en
tN

N
s

24

Dynamical system driven by an external signal

RNNs

Recurrent Neural Networks

state of the hidden units of the network

M
L

–
Re

cu
rr

en
tN

N
s

25

Recurrent Neural Networks

This recurrent network just processes information from the input x by
incorporating it into the state h that is passed forward through time

A RNN with no outputs
Circuit diagram

delay of 1 time step

M
L

–
Re

cu
rr

en
tN

N
s

26

Representation of the unfolded recurrence

Recurrent Neural Networks

M
L

–
Re

cu
rr

en
tN

N
s

27

Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have
recurrent connections between hidden units

universal –
any function computable
by a Turing machine can be
computed by such a
recurrent network of a finite
size

Correct output

M
L

–
Re

cu
rr

en
tN

N
s

28

Recurrent Neural Networks

Recurrent networks that produce an output at each time step and have
recurrent connections only from the output at one time step to the
hidden units at the next time step

M
L

–
Re

cu
rr

en
tN

N
s

29

Recurrent Neural Networks

Recurrent networks with recurrent connections between hidden units,
that read an entire sequence and then produce a single output

M
L

–
Re

cu
rr

en
tN

N
s

30

Vanilla RNN cell

next time step

xt: Input at time t
ht-1: State at time t-1

M
L

–
Re

cu
rr

en
tN

N
s

31

Unfolding

Weights shared over time!

M
L

–
Re

cu
rr

en
tN

N
s

32

Deep RNN

High level feature!

Recurrent depth = 3

Feedforward depth = 4

M
L

–
Re

cu
rr

en
tN

N
s

33

Backpropagation Trough Time (BPTT)

Objective is to update the weight
matrix:

Issue: W occurs each timestep
Every path from W to L is one
dependency

Find all paths from W to L!

(note: dropping subscript h from Wh for brevity)

M
L

–
Re

cu
rr

en
tN

N
s

34

Backpropagation Trough Time (BPTT)

How many paths exist from W to L
through L1?

Just 1. Originating at h0.

M
L

–
Re

cu
rr

en
tN

N
s

35

Backpropagation Trough Time (BPTT)

How many paths from W to L
through L2?

2. Originating at h0 and h1.

M
L

–
Re

cu
rr

en
tN

N
s

36

Backpropagation Trough Time (BPTT)

And 3 in this case.

The gradient has two
summations:
1: Over Lj
2: Over hk

Origin of path = basis for Σ

M
L

–
Re

cu
rr

en
tN

N
s

37

Backpropagation Trough Time (BPTT)

First summation over L

M
L

–
Re

cu
rr

en
tN

N
s

38

Backpropagation Trough Time (BPTT)

● Second summation over h: Each Lj
depends on the weight matrices
before it

Lj depends on all hk
before it.

M
L

–
Re

cu
rr

en
tN

N
s

39

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L

–
Re

cu
rr

en
tN

N
s

40

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L

–
Re

cu
rr

en
tN

N
s

41

Backpropagation Trough Time (BPTT)

No explicit of Lj on hk

Use chain rule to fill missing steps

j

k

M
L

–
Re

cu
rr

en
tN

N
s

42

Backpropagation Trough Time (BPTT)

The final Backpropagation equation

M
L

–
Re

cu
rr

en
tN

N
s

43

Backpropagation Trough Time (BPTT)

j

k

● Often, to reduce memory requirement, we

truncate the network

● Inner summation runs from j-p to j for some

p ==> truncated BPTT

M
L

–
Re

cu
rr

en
tN

N
s

44

Backpropagation Trough Time (BPTT)

Expanding the Jacobian

M
L

–
Re

cu
rr

en
tN

N
s

45

Backpropagation Trough Time (BPTT)

Weight Matrix Derivative of activation function

Repeated matrix multiplications leads to vanishing and exploding
gradients.

M
L

–
Re

cu
rr

en
tN

N
s

46

Vanishing gradients

Considerations
- Smaller weight parameters lead to faster gradients vanishing
- Very big initial parameters make the gradient descent to diverge fast (explode)

M
L

–
Re

cu
rr

en
tN

N
s

47

Exploiding gradients

M
L

–
Re

cu
rr

en
tN

N
s

48

Eigenvalues and Stability

Consider identity activation function
If Recurrent Matrix Wh is a diagonalizable:

Computing powers of Wh is
simple:

Λ is a diagonal matrix with
eigenvalues placed on the
diagonals

Q matrix composed of
eigenvectors of Wh

M
L

–
Re

cu
rr

en
tN

N
s

49

Eigenvalues and Stability

Vanishing
gradients

Exploding
gradients

M
L

–
Re

cu
rr

en
tN

N
s

50

DNNs train difficulties
Vanishing gradient
Exploiding gradient

Solutions
Previously proposed
Unsupervised pre-training
Improve network architecture

Fundamental DL problem

M
L

–
Re

cu
rr

en
tN

N
s

51

Assume the hyperbolic tangent activation function

Initial state h(0)

Update equation

RNNs – forward propagation

M
L

–
Re

cu
rr

en
tN

N
s

52

Total loss

RNNs – forward propagation

Negative log-likelihood

M
L

–
Re

cu
rr

en
tN

N
s

53

RNNs – Teacher forcing

Illustration of teacher forcing

M
L

–
Re

cu
rr

en
tN

N
s

54

back-propagation through time (BPTT) algorithm

For each node N we need to compute the gradient
recursively

based on the gradient computed at nodes that follow it in
the graph

Start the recursion

RNNs – learning

M
L

–
Re

cu
rr

en
tN

N
s

55

Gradient on the outputs at time step t, for all i, t,

RNNs – learning

M
L

–
Re

cu
rr

en
tN

N
s

56

Backwards starting from the end of the sequence

Back-propagate gradients through time

RNNs – learning

Once the gradients on the internal nodes of the computational graph are
obtained, we can obtain the gradients on the parameter nodes

M
L

–
Re

cu
rr

en
tN

N
s

57

For all the parameters

RNNs – learning

M
L

–
Re

cu
rr

en
tN

N
s

58

RNNs – Bidirectional

prediction of y(t) which
may depend on the whole
input sequence e.g., speech
recognition

M
L

–
Re

cu
rr

en
tN

N
s

59

RNNs – Bidirectional

encoder-decoder or
sequence-to-sequence
RNN architecture

M
L

–
Re

cu
rr

en
tN

N
s

60

Deep Recurrent Networks

The hidden recurrent state can be broken down into
groups organized hierarchically

M
L

–
Re

cu
rr

en
tN

N
s

61

Deep Recurrent Networks

Deeper computation (e.g., an MLP) can be
introduced in the input-to-hidden,
hidden-to-hidden and hidden-to-output parts.
This may lengthen the shortest path linking
different time steps.

M
L

–
Re

cu
rr

en
tN

N
s

62

Deep Recurrent Networks

The path-lengthening effect can be mitigated by
introducing skip connections

M
L

–
Re

cu
rr

en
tN

N
s

63

Recursive NNs

Generalization of recurrent networks
Applied for structurated data

M
L

–
Re

cu
rr

en
tN

N
s

64

Long-Term dependendencies

Vanishing/Exploding Gradients in RNN

Weight
Initialization

Methods

Constant Error
Carousel

● Identity-RNN
● np-RNN

● LSTM
● GRU

Echo State
Networks

M
L

–
Re

cu
rr

en
tN

N
s

65

Long-Term dependendencies

Random Wh initialization of RNN has no constraint
on eigenvalues

vanishing or exploding gradients in the initial epoch

Careful initialization of Wh with suitable
eigenvalues

allows the RNN to learn in the initial epochs

hence can generalize well for further iterations

M
L

–
Re

cu
rr

en
tN

N
s

66

Long-Term dependendencies

Trick #1(IRNN)
Wh initialized to Identity

Activation function: ReLU

Trick# 2 (np-RNN)
Wh positive definite (+ve real eigenvalues)

At least one eigenvalue is 1, others all less than equal to
one

Activation function: ReLU

M
L

–
Re

cu
rr

en
tN

N
s

67

Long Short-Term Memory

M
L

–
Re

cu
rr

en
tN

N
s

68

Gated RNNs
Long Short-Term memory
Gated Recurrent Unit

Idea
creating paths through time that have derivatives that
neither vanish nor explode

Gated RNNs

M
L

–
Re

cu
rr

en
tN

N
s

69

Gated RNNs

M
L

–
Re

cu
rr

en
tN

N
s

70

LSTM cell

The core idea is this cell
state Ct, it is changed
slowly, with only minor
linear interactions. It is very
easy for information to flow
along it unchanged.

ht-1

Ct-1

This sigmoid gate
determines how much
information goes thru

This decides what info
Is to add to the cell state

Output gate
Controls what
goes into output

Forget input
gate gate

Why sigmoid or tanh:
Sigmoid: 0,1 gating as switch.
Vanishing gradient problem in
LSTM is handled already.

M
L

–
Re

cu
rr

en
tN

N
s

LSTM cell

it decides what component
is to be updated.
C’t provides change
contents

M
L

–
Re

cu
rr

en
tN

N
s

LSTM cell

Updating the cell state

Decide what part of
the cell state to output

M
L

–
Re

cu
rr

en
tN

N
s

RNN vs LSTM

M
L

–
Re

cu
rr

en
tN

N
s

Peephole LSTM

Allows “peeping into the memory”. Can learn the fine distinction between
sequences of spikes separated by either 50 or 49 discrete time steps

M
L

–
Re

cu
rr

en
tN

N
s

Gated Recurrent Unit (GRU)

It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

reset gate Update gate

M
L

–
Re

cu
rr

en
tN

N
s

76

Clipping gradients

“landscape” in which one finds “cliffs”

parameter gradient is very large

Clipping the gradient

M
L

–
Re

cu
rr

en
tN

N
s

77

RNN vs LSTM

Saliency Heatmap

Recent words more
salient

M
L

–
Re

cu
rr

en
tN

N
s

78

RNN vs LSTM

Saliency Heatmap

LSTM captures long term
dependencies

M
L

–
Re

cu
rr

en
tN

N
s

Sequence to sequence chat model

M
L

–
Re

cu
rr

en
tN

N
s

Speech recognition RNN

M
L

–
Re

cu
rr

en
tN

N
s

81

The equivalent idea for RNNs
fix the input- hidden connections and the hidden-hidden
connections at random values
only learn the hidden-output connections

The learning is then very simple (assuming linear
output units)

Its important to set the random connections very
carefully so the RNN does not explode or die

See also Liquid State Machine

Reservoir computing

M
L

–
Re

cu
rr

en
tN

N
s

Reservoir computing

M
L

–
Re

cu
rr

en
tN

N
s

Reservoir computing

