>k | DIPARTIMENTO DI SCIENZE
2<|E TECNOLOGIE

Machine Learning (part Il)

Recurrent
Neural Networks

Angelo Ciaramella

Recurrent Neural Networks

¢ RNNs

e family of neural networks for processing sequential
data

k specialized for processing a sequence of values

xt oL, xt©

e early ideas found in machine learning and statistical

models of the 1980s

sharing parameters across different parts of a model

ML — Recurrent NNs

o
.'4\2 \

\E*‘
& foen

ML — Recurrent NNs

2.4
4

E‘»
Ffoen

Recurrent Neural Networks

¥ Related idea

k use of convolution across a 1-D temporal sequence

time-delay neural networks

¥ RNNs

minibatches of sequences

k may adlso be applied in two dimensions across spatial
data such as images

Adaptive filters

¢ Adaptive filter

B The parameters are estimated

learning algorithm

B An error function is used

E e.g., Linear Artificial Neural Network (Adaline)

ML — Recurrent NNs

u®
Py

Adaptive filters

-0
K

E‘»
Ffoen

ML — Recurrent NNs

¢ Hospital
B ECG (electrocardiogram) corrupted by noise at 50 Hz

(electricity)

¥ The current can vary between 47 Hz and 53 Hz
e A filter for the elimination of static noise at 50 Hz could

give errors

An adaptive filter can learn from the current shape of noise

» Helicopter

Pilot speaking with noise from rotating propeller
The noise has not a spectrum well defined
An adaptive filter learns the shape of the noise

The noise can be subtracted from the signal for only the
pilot's voice

R g

Adaline

Input + FFNN with delayed inputs

Features layer Hidden * No internal state
. layer = J

Output
delay

ML — Recurrent NNs

Adaptive filters

input

x(n)

e(n) =d(n)—d(n)

x(n)=d(n)+ y(n)

noise

W

n

g =W +AwW_

gradient)

ML — Recurrent NNs

4
$
-3

Learning algorithm (e.g., LMS and descent

Variable filter | d(n)
> |+ Je—Ff— d(n)
W), -\ +
$ target signal
Aw,, e(n)
Update
algorithm X W {WO W1 w?
e n nd'"'nd°to

FIR structure

d(n)=w, x(n)|

X(n) = [x(n),x(n —D),...,x(n— p)]

source signal

Computational graphs

¥ Related idea

¥ formalize the structure of a set of computations

B introduce the idea of an operation

an operation is a simple function of one or more variables

ML — Recurrent NNs

-0
K

E‘»
Ffoen

Computational graphs

Graph using the x operation to compute z = xy

ML — Recurrent NNs

u®
Py

Computational graphs

ML — Recurrent NNs

u®
S

intermediate expressions

logistic regression prediction y= 0 (V:L'T w + b)

10

Computational graphs

ML — Recurrent NNs

u®
S

Minibatch of inputs X

H = max{0, XW + b}

11

ML — Recurrent NNs

u®
S

Computational graphs

More than one operation of a linear regression model

12

RNNs

¢ Artificial Neural Networks

e exhibit temporal dynamic behavior

B can use their internal state (memory) to process
sequences of inputs

B models sequences

ML — Recurrent NNs

o
.'4\'.‘ \

\E“
& foen

Time series
Natural Language

Speech

Convert non-sequences to sequences, eg: feed an image as
a sequence of pixels!

13

K%

Feed-forward NN

Input Hidden Output
Features layer layer(s) layer

~ Petals
Decisions
Iris
——————— Sepal
Yellow .
) —Iris

ML — Recurrent NNs

Iris flower ™ Veins
e N
Simplified representation:
Input layer Hidden layer(s) Output layer
7 . Input Decision output

) 14

%®
L
v S

Temporal dipendencies

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4
Stem: seen Stem: seen Stem: seen Stem: partial Stem: hidden
Petals: hidden Petals: hidden Petals: partial Petals: partial Petals: seen

P(Iris). 0.1 P(lris): 0.11 P(lns): 0.2 P(Ins): 045 P(lIris): 0.9
P(~Iris): 0.9 P(~Iris): 0.89 P(~Iris): 0.8 P(~Iris): 0.55 P(~lris). 0.1
- _ o _ \ S | 3 2
By ey oot S e —_‘;n'ztt'é?-'_?-’:—"ggg

Decision on
sequence of

observations

ML — Recurrent NNs

Reber Grammar

Problem that can not be solved without memory
States (nodes)

Begin

7

z

o

5 Transitions
& N (edges)

B Transitions have equal probabilities:

2 P(1—-2)=P(1—3)=0.5

16

Jordan's sequential network

p
Limited short-term
memory

< 4

Input layer Hidden layer Output layer

)@__)?(t)

Context layer 1 step delay

x(1)

B Qutput-to hidden

v connections

=

[=

0

3

(U}

(a4

|
= M.I Jordan NN (1986).

17

Jordan's sequential network

ML — Recurrent NNs

f o]
K

E*
Ffoen

Jordan NN has been applied to categorize a class of English syllables.

18

Simple recurrent network

ML — Recurrent NNs

u®
S

n/. \l
Hidden-to hidden connections
make system Turing-complete

hidden layer .
feauen*ent
feedback
iput layer contest layer
Input layer Hidden layer Output layer

x(?) O y(1)

Context layer] step del

Elman RNN (1990). 19

Simple recurrent network

L8

ML — Recurrent NNs

5
#5&

Real
inputs

(

|

Context
inputs

x;(1)

Hidden layer

Xg (1)

h(t-1)

h(t-m)

v

Output layer

y(®)

~

Elman RNN. Basic RNN structure called “Vanilla” RNN

ML — Recurrent NNs

»

Simple recurrent network

CONTEXT UNITS

Elman SRN. A total of 60,000 randomly generated strings are used
for training.

Applications of RNNs

4
T\ ? 2
&

ML — Recurrent NNs

VIOLA:
Why, Salisbury must find his flesh and thought
That which | am not aps, not a man and in fire,
To show the reining of the raven and the wars
A person riding a To grace my hand reproach within, and not a fair are hand,
motorcycle on a dirt road. That Caesar and my goodly father's world;

Write like Shakespeare

<4 Inreply to Thomas Paine

' DeepDrumpf @DeepDrumpf - Mar 20

ﬁ There will be no amnesty. It is going to pass because the people are
going to be gone. I'm giving a mandate. #ComeyHearing

@Thomas1774Paine

Image Captioning

..and Trump
RNN Generated Music

RNN Generated Eminem
rapper

Twitterbot
I'm a Neural Network trained on Trump's
transcripts. Priming text in []s. Donate

()
... and more! to interact! Created by

22

https://t.co/o4pye5WflK
https://twitter.com/hayesbh

Recurrent Neural Networks

¥ Dynamical system (reccurrent expression)

st = f(st71). g)

State of the system

» Example
sB®) =152 0)

- =f(f(s1);0);0)

3

g .s<>\--->|s<>‘
s

W Unfolded computational graph

23

Recurrent Neural Networks

¥ Dynamical system driven by an external signal

gt — f(s(t_l),w(t);H)

» RNNs
Y = f(RED 2®).)

state of the hidden units of the network

ML — Recurrent NNs

u®
S

24

R g

Recurrent Neural Networks

o A RNN with no outputs
Circuit diagram

delay of 1 time step

OLIN

f

This recurrent network just processes information from the input x by
incorporating it into the state h that is passed forward through time

|h,()‘- Mh()‘

Unfold

ML — Recurrent NNs

25

Recurrent Neural Networks

¥ Representation of the unfolded recurrence

B0 —g®) (20 =D gt=2) @) 5 1)

-
)

:f(h(t—l),m(t); 0)

ML — Recurrent NNs

u®
S

26

Recurrent Neural Networks

universal —

any function computable

by a Turing machine can be
computed by such a
recurrent network of a finite
size

w /7N

" ol)
> \\ _ ,/
z

=

o

5

O

)

(a4

|

g Recurrent networks that produce an output at each time step and have

recurrent connections between hidden units

Q. .

27

Recurrent Neural Networks

ML — Recurrent NNs

Recurrent networks that produce an output at each time step and have

recurrent connections only from the output at one time step to the
% hidden units at the next time step

28

u®
Py

Recurrent Neural Networks

ML — Recurrent NNs

Recurrent networks with recurrent connections between hidden units,
that read an entire sequence and then produce a single output

29

Vanilla RNN cell

ML — Recurrent NNs

u®
Py

X;: Input at time t

h.,: State at time t-1

30

Unfolding

¢ G, G
? ? ?
y Y2 £
1 1 4

hy = f(Wnhi—1 + Woxy)

ye -\». / s
Z
Z
—
(]C) X; ho \\} h,
| -
—
=)
O
()
o
|
=
L P
#2%

[

Weights shared over time!

31

ML — Recurrent NNs

u®
S

Deep RNN

High level feature!

Feedforward depth =4

Recurrent depth =3

32

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

R g

Objective is to update the weight
matrix:

oL
W W — a2
~ Cow

Issue: W occurs each timestep
Every path from Wto L is one
dependency

Find all paths from W to L!

(note: dropping subscript h from W, for brevity)

33

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

u»

How many paths exist from W to L
through L;?

Just 1. Originating at h,.

34

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K%
\%i
-3

How many paths from W to L
through L,?

2. Originating at hg and h;.

35

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

K%

And 3 in this case.

Origin of path = basis for 2

oL
oW

The gradient has two
summations:

1: Over L

2: Over hy

36

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

u®
P

37

Backpropagation Trough Time (BPTT)

K%

ML — Recurrent NNs

Sk

Yo

¥q

hy

X4

¥z

Xz

¥a

X3

Y11

R4

X719

e Second summation over h: Each L,
depends on the weight matrices
before it

oL; _ i OL;| o
Ohy,| OW

/

L; depends on all h
before it.

38

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

u»

OL; _ i L, |9hy
Oy, |OW

No explicit of L; on hy

Use chain rule to fill missing gteps

8Lj _ ZJ: 8LJ Gyj (9h3

Ohy,

8yj 8hj 8hk

oW

39

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

u»

L; _ i OL;|ohs
Ohy, [OW

No explicit of L; on hy

Use chain rule to fill missing gteps

Ohy,

oL; i OL; y; Oh;
B Gyj 8hj 8hk

oW

40

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

u»

OL; _ ZJ: L, |9hy
Ohy. oW

No explicit of L; on hy

Use chain rule to fill missing gteps

oL; _ ZJ: OL; dy; Oh;

Ohy.

8yj 6h3 8hk

oW

41

Backpropagation Trough Time (BPTT)

OL; 9y; [{4 Ohm
ah"m,—l

m=k-+1

The final Backpropagation equation

ML — Recurrent NNs

u®
S

|

Backpropagation Trough Time (BPTT)

Ohy,

=k+

OL ’ (‘3LJ Byj / 8hm
oWy Z 2 dy;|on; mH Ohm1 | OWy,

e Often, to reduce memory requirement, we

truncate the network

(2]

% ® Inner summation runs from j-p to j for some
= p ==> truncated BPTT
o

=

>)

O

0]
(a4

|
—]
=

43

Backpropagation Trough Time (BPTT)

S

L == L, ayj(' Ohy,)ahk

oW ; 8yj 8h] me—k-t1 Ohy—1 || OW

=0 k

hm — f(Whhm—l =+ W:E:Em)

Ohp,
6h'm—l

= W/ diag (f'(Whhpm—1 + Woz,,))

ML — Recurrent NNs

Expanding the Jacobian

u®
P

44

Backpropagation Trough Time (BPTT)

ML — Recurrent NNs

2.4
4

E‘»
Ffoen

Weight Matrix

Repeated matrix multiplications leads to vanishing and exploding

gradients.

liag (f'(Wrhpm—1 + Waz,,))

DN

Derivative of activation function

45

Vanishing gradients

1.0

‘— snamofo\ L0 — sigmoid derivate
== tanh _ ~ tanh derivate
0.5 08 i
—~ \: Qe !
= 00 O Gradient
= 04
ol Saturation = /close 2
. agk :
-1.0 Qo
0 - 0 5 10 -10 - & 5 10
oh, _ dh, dh; oh, dh,
) dh, 0h,_, 08h, dh, dh,
Z
z .
o Known problem for deep feed-forward networks.
5 For recurrent networks (even shallow) makes impossible to learn long-term dependencies!
O
&
!~ Considerations
= - Smaller weight parameters lead to faster gradients vanishing
- Very big initial parameters make the gradient descent to diverge fast (explode)
TS 46

Exploiding gradients

4
e
B 53

ML — Recurrent NNs

0.35
0.30

o
0.15
0.10
0.05

Pascanou R. et al, On the difficulty of training
recurrent neural networks. arXiv (2012)

/

Large increase in the norm of the gradient
during training

0.255 i
0.20 &

Diagnostics: NaNs: Cost function large fluctuations

0.7 —
— Train

064 — validation

0.5
0.4
0.3

0.2}

0 5 10 / 15 20

Network can not converge and
weigh parameters do not stabilize

\

0.1

J

7

Solutions:
* Use gradient clipping
* Try reduce learning rate

* Change loss function by setting constrains on weights (L1/L2 norms)

47

Eigenvalues and Stability

ML — Recurrent NNs

u®
ke

Consider identity activation function

If Recurrent Matrix W, is a diagonalizable:
Q matrix composed of
eigenvectors of Wy,

Wh:Q_l*A*Q

A is a diagonal matrix with
eigenvalues placed on the

diagonals
Computing powers of W, is

simple:

WP=Q '+« A" % Q

48

Eigenvalues and Stability

ML — Recurrent NNs

»
2 i;-

Vanishing
gradients
—0.6180 0 w0 || 0.0081 0
0 1.6180] A _[0 122.9919
Exploding
gradients

WPr=Q ' xA"*Q

49

Fundamental DL problem

¢ DNNs train difficulties

® Vanishing gradient
r Exploiding gradient

» Solutions
E Previously proposed
e Unsupervised pre-training

e Improve network architecture

ML — Recurrent NNs

o
- ¥
N
s

50

RNNs - forward propagation

ML — Recurrent NNs

u®
Py

r Assume the hyperbolic tangent activation function

¢ Initial state h(©

» Update equation

a(t) — b + Wh(t_l) 4 U.’.B(t)
ht) = tzmh(a(t))
o) = ¢+ Vh
Zi(t) — s()ft.max(o(t))

51

RNNs - forward propagation

ML — Recurrent NNs

u®
ke

¥ Jotal loss

— Zl()gpmodel (y(t) | {w(l)’ s ’m(t)})
t

Negative log-likelihood

52

RNNs - Teacher forcing

I

6Q®<e 6
eqe’i‘e
I
Qe<e

(7]
Z
Z
=
()
=
=),
(V)
()
M - - -
| Train time Test time
—
=
I lllustration of teacher forcing

53

ML — Recurrent NNs

-0
K

E‘»
Ffoen

RNNs - learning

r» back-propagation through time (BPTT) algorithm

¥ For each node N we need to compute the gradient
recursively

¥ based on the gradient computed at nodes that follow it in

the graph
VnL
p Start the recursion
0L B
OL®

54

RNNs - learning

¥ Gradient on the outputs at time step t, for all i, t,

OL OL OL®

(Vo L); = — =
i o (¢ 7.() o (t
g0y OLW oV
log softmax(z); = 2z — l()gz exp(z;
=
=z
S -~ —
8 log) ;exp(zj) ~ max; z; = 2
| |
=

95

RNNs - learning

¥ Backwards starting from the end of the sequence

» Back-propagate gradients through time

T T
B Oh(t+1) , 9o .

5 2

5 —w' (V e+ L) diag (l — (h(t+1))) +vT (Vgo L)
2

|

2 Once the gradients on the internal nodes of the computational graph are
o obtained, we can obtain the gradients on the parameter nodes

56

RNNs - learning

ML — Recurrent NNs

K%
i‘-

» For all the parameters

VL

VL

Vv L

VulL

t
A\ "
Z (%) VoLl = Zdiag (1 — (h(t))2) VoL
: t
Z Z ()0ﬁt) Vvoy = > (Voir L) KO

t

Z(OO(t)>TV L ZV I
; oyl = ot)
dc -

Y

RNNs - Bidirectional

ML — Recurrent NNs
0%e1e
>
e"e‘e‘e o
| <
(3 -6

o

« N
\R%
iR

prediction of y(t) which
may depend on the whole

input sequence e.g., speech
recognition

58

u®

ML — Recurrent NNs

RNNs -

Bidirectional
Enooder)
k : 5)
Decoder! A

'~ ™

e ... -
€ .
ofolele
\ _J

encoder-decoder or

sequence-to-sequence

RNN architecture

59

Deep Recurrent Networks

ML — Recurrent NNs

R g

Ol
9

The hidden recurrent state can be broken down into
groups organized hierarchically

60

ML — Recurrent NNs

R g

Deep Recurrent Networks

Deeper computation (e.g., an MLP) can be
introduced in the input-to-hidden,
hidden-to-hidden and hidden-to-output parts.
This may lengthen the shortest path linking
different time steps.

@*Oé%@*@

61

Deep Recurrent Networks

The path-lengthening effect can be mitigated by
introducing skip connections

ML — Recurrent NNs

R g

62

Recursive NNs

ML — Recurrent NNs

u®

Generalization of recurrent networks
Applied for structurated data

63

R g

Long-Term dependendencies

ML — Recurrent NNs

Vanishing/Exploding Gradients in RNN

—

Weight
Initialization
Methods

!

e Identity-RNN
® np-RNN

/ N\

Constant Error Echo State
Carousel Networks

e |STM

e GRU

64

Long-Term dependendencies

¥ Random W, initialization of RNN has no constraint
on eigenvalues

k vanishing or exploding gradients in the initial epoch

» Careful initialization of W, with suitable
eigenvalues

k allows the RNN to learn in the initial epochs

k hence can generalize well for further iterations

ML — Recurrent NNs

o
L

65

o
.'4\2 \

\E*‘
& foen

ML — Recurrent NNs

Long-Term dependendencies

e Trick #1(IRNN)

E W, initialized to ldentity

p Activation function: RelLU

¥ Trick# 2 (np-RNN)

Wh positive definite (+ve real eigenvalues)

e At least one eigenvalue is 1, others all less than equal to
one

® Activation function: RelLU

66

K%
i‘-

Long Short-Term Memory

ML — Recurrent NNs

67

Gated RNINs

¥ Gated RNNs

B Long Short-Term memory

Gated Recurrent Unit

r ldea

B creating paths through time that have derivatives that
neither vanish nor explode

ML — Recurrent NNs

2.4
4

E‘»
Ffoen

68

Gated RNINs

output

(%)
Z
Z
e
=
v
S input Input gate orget gate utput gate
O
)
(a%4
I
2 / \

o
K7

69

LSTM cell

THEREEHRIS@alENTo
BTSN TSHe
@mfgﬂ@@imﬂ gogsuhru @ @
A
fe. / \ \ t
> N 4 ™
e >
A T r>$ G A
?Ilcl’ll‘a"hll
- Jr(: TRdN P>
& ® &
o
E Forget input
o gate gate
5 The core idea is thiscell | é
& VSR8 @M XEHARGed oy >

- STERITth GRimARwitch. ff
2 VRpshiggraciensPioRarn g
= LS1Y o hanglatalRa® o

%-# along it unchanged.

O, = f; %Cy-i +i:%C,

2.4
\

%

ML — Recurrent NNs

LSTM cell

A
s)
—®——® >
Eanh>
gk
tanh
ft ft = O'(Wf-[ht_17xt] + bf) - m >

J
s

" it decides what component
is to be updated.

. C’; provides change
| i = o (Wy-lhev, 2] + bs) t P g
i ~ contents

. Ct — tanh(WC . [ht_l, xt] + bC’)

A

%,

f o]
K

E*
Ffoen

LSTM cell

ML — Recurrent NNs

Ciy

& @ >
i tT itr-%'
he A
CGanh>
Ot 3
By | O | hy

Cy = fi % Cr_q1 + iy % C,

o =0 (Wy [hi—1,2¢] + bo)
hs = o4 * tanh (Cy)

Updating the cell state

Decide what part of
the cell state to output

RNN vs LSTM

(b) LSTM

(a) RNN

®

SNIN #us14nday — W

o 7
B

o

Peephole LSTM

fi =0 (W [Ce—1,hi—1, 2] + by)
it =0 (W;-|Cp—1,hi—1,2¢] + b;)
u U or = 0 (Wy-[C, he—1,2¢] + byo)

Allows “peeping into the memory”. Can learn the fine distinction between
sequences of spikes separated by either 50 or 49 discrete time steps

ML — Recurrent NNs

f o]
K

E"—
Ffoen

Gated Recurrent Unit (GRU)

reset gate Update gate

it = 0 (Wz . [ht—1>$t])
re =0 (W'r ' [ht—laxt])
ilt — tanh (W : [rt * ht_l, ZIZ’t])

ht:(l—zt)*ht_l—i—zt*ﬁt

It combines the forget and input into a single update gate.
It also merges the cell state and hidden state. This is simpler
than LSTM. There are many other variants too.

ML — Recurrent NNs

f o]
K

E*
Ffoen

Clipping gradients

Without clipping With clipping

J(w,b)
J(w,b)

parameter gradient is very large

“landscape” in which one finds “cliffs” gv

Clipping the gradient

ML — Recurrent NNs

76

%®
L
v S

RNN vs LSTM

Saliency Heatmap

waee ||| TR B e (N
fhe MU the
movie movie

Recurrent “ LSTM

(7]

Z

Z Recent words more
.

(=

5 salient

e

—

=),

O

3]
(a4

I
—
=

77

RNN vs LSTM

ML — Recurrent NNs

4
$
-3

Saliency Heatmap

hate

the
movie
though
the
plot

is
A W
-]

hate

theh

0

0 20 3 4 5
Recurrent

10 20 30 40 50

LST™M

LSTM captures long term

dependencies

024

0.18
0.15
0.12
0.09
0.08
int
0.03

0.00

78

Sequence to sequence chat model

W | am fine <EOL>

|

How are you <EOL>

LSTM Encoder LSTM Decoder

ML — Recurrent NNs

o,(\.

k

®

1
a0
o

1
CY

1

Andrew Ng

Speech recognition example (Deep Speech)

Speech recognition RNN

SNIN #us14nday — W LM

Reservoir computing

¢ The equivalent idea for RNNs

fix the input- hidden connections and the hidden-hidden
connections at random values

e only learn the hidden-output connections

¢ The learning is then very simple (assuming linear
output units)

» Its important to set the random connections very
carefully so the RNN does not explode or die

ML — Recurrent NNs

r See also Liquid State Machine

o
g%

81

Reservoir computing

ML — Recurrent NNs

u»

Echo State
Network Readout

K mput N mternal units L output
UNits e units

7 /208 @ o

Herbert Jaeger, 2001

u®
S

Reservoir computing

ML — Recurrent NNs

1/4

|~

1/16

100

input signal

200

dynamical
reservoir

100 200

output (or
teacher)
signal

