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Machine Learning (part II)

Convolutional
Neural Network

Angelo Ciaramella



M
L 

–
C

N
N

2

Scale up neural networks to process very large 
images / video sequences

Sparse connections
Parameter sharing

Automatically generalize across spatial
translations of inputs

Applicable to any input that is laid out on a grid
(1-D, 2-D, 3-D, …)

Convolutional Neural Networks
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Convolutional Neural Networks (CNN)
processing data that has a known grid-like topology

e.g., time series and image data

use convolution in place of general matrix multiplication
in at least one of their layers

Everything else stays the same
Maximum likelihood
Back-propagation
etc.

Introduction
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CNN
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Convolution operation

Discrete convolution

Convolution
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2D convolution operation

Commutative 

Cross-correlation

Convolution

flipping the kernel
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Images
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Convolution

2D convolution 
example
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Convolution

Convolution example

Movement of the 
kernel
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Three ideas
Sparse interactions
Parameter sharing
Equivariant representations

Motivation
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Three operations
Convolution

like matrix multiplication
Take an input, produce an output (hidden layer)

Deconvolution
like multiplication by transpose of a matrix
Used to back-propagate error from output to input
Reconstruction in autoencoder / RBM

Weight gradient computation
Used to backpropagate error from output to weights
Accounts for the parameter sharing

Operations
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Sparse interactions

sparse 
(kernel of width 3)

Dense connections
no longer sparse
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Sparse interactions

sparse 

Dense 
connections
no longer sparse
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Sparse interactions

even though direct connections in a convolutional net are very sparse, 
units in the deeper layers can be indirectly connected to all or most of the 
input image
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Goal 
rather than learning a separate set of parameters for 
every location, we learn only one set
layers have a property called equivariance to 
translation

if the input changes, the output changes in the same way
f(x) is equivariant to a function g if f (g(x)) = g(f(x))
if we let g be any function that translates the input,

i.e., shifts it, then the convolution function is equivariant to g

Parameter sharing 
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Goal 
rather than learning a separate set of parameters for 
every location, we learn only one set 

Parameter sharing 
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Parameter sharing 

Efficiency of edge detection

Input Output

Kernel
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Stages
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ReLU activation function

Rectified Linear Units
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ReLU generalizations
Slope

Absolute value rectification

Rectified Linear Units
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Leaky ReLU

max(αz, z)
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Pooling function
replaces the output of the net at a certain location with 
a summary statistic of the nearby outputs
helps to make the representation become
approximately invariant to small translations of the 
input

Max pooling
maximum output within a rectangular neighborhood

Average of a rectangular neighborhood

L2 norm of a rectangular neighborhood

Pooling
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Pooling

Invariance –
half of the values in the top 
row have changed
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Pooling

Invariance -invariant to transformations of the input
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Pooling

max-pooling with a pool width of three and a stride between pools of 
two. It reduces the representation size by a factor of two, which
reduces the computational and statistical burden on the next layer
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Pooling
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Basic Convolution Function
The functions used in practice differ slightly

Neural Network context
operation that consists of many applications of 
convolution in parallel

each layer of our network to extract many kinds of features
the input is usually not just a grid of real values

color image has a red, green and blue intensity at each
pixel
working with images usually the input and output of the 
convolution as being 3-D tensors
usually work in batch mode using 4-D tensors

Variants of the CNN



M
L 

–
C

N
N

28

4-D kernel tensor

Tensors
Array with more that two axes

connection strength between a unit in channel i of the 
output and a unit in channel j of the input, with an offset 
of k rows and l columns between the output unit and the 
input unit

Variants of the CNN

tensor elements
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Input observed data

Convolution

Variants of the CNN

input unit within channel i at row j and column k



M
L 

–
C

N
N

30

downsampled convolution function c such that

s is the stride of the downsampled convolution
It is possible to define a separate stride for each
direction of motion

Variants of the CNN
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Variants of the CNN
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Variants of the CNN
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Essential feature zero-pad
to make it wider

Without zero-padding
the width of the representation shrinks by one pixel less
than the kernel width at each layer
shrinking the spatial extent of the network rapidly or 
using small kernels

Variants of the CNN
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Variants of the CNN

The effect of zero 
padding on network 
size

representation
shrinks by five pixels
at each layer

kernel of width six
at every layer

Sixteen pixels

Adding five implicit zeroes
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Variants of the CNN

Same convolution
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Three special cases
valid convolution

no zero-padding
all pixels in the output are a function of the same number of 
pixels in the input
the output shrinks at each layer

same convolution
zero-padding is added to keep the size of the output equal
to the size of the input

the optimal amount of zero padding (in terms of test 
set classification accuracy) lies somewhere between
“valid” and “same” convolution

Zero-padding
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adjacency matrix (no convolution) in the graph of 
our MLP is the same

Weights by a 6-D tensor

Unshared convolution

i, the output channel, j, the output row, k, the output column, l, the input 
channel, m, the row offset within the input, and n, the column offset within
the input
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Unshared convolution

Local connections

Convolution

Full connections
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Tiled convolution

t different choices of kernel stack in each
direction
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Three operations for training any depth of 
feedforward convolutional network

convolution
backprop from output to weights
backprop from output to inputs

We consider strided CNN

Learning
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Minimize the loss function

Derivatives w.r.t. the weights in the kernel

Learning
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If the layer is not the bottom layer

Learning
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Structured output

recurrent convolutional network 
for pixel labeling

pooling operator with unit stride
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Data types

Data types
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reduce the cost of CNN training 
use features that are not trained in a supervised
fashion

simply initialize them randomly
design them by hand
one can learn the kernels with an unsupervised criterion
(clustering)
Random filters

Features
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Some of the key design principles of neural
networks were drawn from neuroscience

mammalian vision system works
David Hubel and Torsten Wiesel (Nobel Prize)

neurons in the early visual system responded most strongly
to very specific patterns of light, such as precisely oriented
bars, but responded hardly at all to other patterns

Primary visual cortex
Spatial map
Simple cells
Complex cells

Neuroscientific basis
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Grandmother cells
cells that respond to some specific concept and are 
invariant to many transformations of the input
medial temporal lobe

Neuroscientific basis
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Gabor functions

Reverse correlation shows us that most V1 cells have weights that are described
by Gabor functions
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Gabor functions

Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are 
reminiscent of the Gabor functions known to be present in primary visual cortex. 

Unsupervised learning                      First layer convolution kernels
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Recent models
LeNet
AlexNet
VGGNet
GoogLeNet
ResNet
ZFNet

CNN models


