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Convolutional Neural Networks

» Scale up neural networks to process very large
images / video sequences
B Sparse connections

B Parameter sharing

» Automatically generalize across spatial
translations of inputs

» Applicable to any input that is laid out on a grid
(1-D, 2-D, 3-D, ...)
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Introduction

¢ Convolutional Neural Networks (CNN)

B processing data that has a known grid-like topology

e.g., time series and image data

B use convolution in place of general matrix multiplication
in at least one of their layers

» Everything else stays the same
B Maximum likelihood
k Back-propagation

B efc.
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Convolution

» Convolution operation

s(t) = /:I.r(a,)'u,*(t —a)da
¥ Discrete convolution

s(t) = (% w)(t) =

ML — CNN

s(t) = (z *w)(t)
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Convolution

» 2D convolution operation

S(i,7) = (I = K)( ZZI (m,n)K(t—m,j —n)

¢ Commutative
flipping the kernel

S(i,7) = (K = I)( ZZI i —m,j —n)K(m,n)

p Cross-correlation

S(i,5) = (I * K)( ZZ[ (i +m,7 +n)K(m,n)
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Images

3 Colour Channels
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Height: 4 Units
(Pixels)
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Convolution
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Convolution
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Motivation

» Three ideas
B Sparse interactions
B Parameter sharing

e Equivariant representations
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Operations

» Three operations

e Convolution
like matrix multiplication

Take an input, produce an output (hidden layer)

e Deconvolution
like multiplication by transpose of a matrix
Used to back-propagate error from output to input
Reconstruction in autoencoder / RBM

B Weight gradient computation

Used to backpropagate error from output to weights
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Sparse interactions

(kernel of width 3)

sparse
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Sparse interactions
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Sparse interactions
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even though direct connections in a convolutional net are very sparse,
units in the deeper layers can be indirectly connected to all or most of the
input image
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Parameter sharing

r Goal

® rather than learning a separate set of parameters for
every location, we learn only one set

e layers have a property called equivariance to
translation
if the input changes, the output changes in the same way
f(x) is equivariant to a function g if f (g(x)) = g(f(x))

if we let g be any function that translates the input,

m i.e., shifts it, then the convolution function is equivariant to g
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Parameter sharing
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r Goal

® rather than learning a separate set of parameters for
every location, we learn only one set
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Parameter sharing
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Efficiency of edge detection
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Stages

Complex layer terminology

Next layer

Simple layer terminology

I

Next layer

Convolutional Layer

Pooling stage

\

Pooling layer

Detector stage:
Nonlinearity
e.g., rectified linear

3

A

Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform

A

A

Convolution layer:
Affine transform
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Rectified Linear Units
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RelLU activation function

max{0, z}

9(z)

g(z) = max{0, z}

The Rectified Linear Activation Function

1
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Rectified Linear Units

» RelU generalizations

E Slope

h; = g(z, a); = max(0, z;) + a; min(0, z;)

p Absolute value rectification

a; =—1 g(z) = |z

ML — CNN
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Leaky RelLU
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Leaky RelLU activation function

max(oz, z)
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Pooling
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» Pooling function

replaces the output of the net at a certain location with
a summary statistic of the nearby outputs

helps to make the representation become
approximately invariant to small translations of the
input

Max pooling

maximum output within a rectangular neighborhood
Average of a rectangular neighborhood

L? norm of a rectangular neighborhood
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Pooling
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POOLING STAGE

DETECTOR STAGE

Invariance —
half of the values in the top
row have changed
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Pooling

Large response
in pooling unit

Large response
in pooling unit

Large Large
response response
in detector in detector
unit 1 unit 3
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Invariance -invariant to transformations of the input
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Pooling
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L.

max-pooling with a pool width of three and a stride between pools of

two. It reduces the representation size by a factor of two, which
reduces the computational and statistical burden on the next layer
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Pooling

4® ML-CNN
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Variants of the CNN

¥ Basic Convolution Function

ke The functions used in practice differ slightly

¥ Neural Network context

B operation that consists of many applications of
convolution in parallel
each layer of our network to extract many kinds of features

e the input is usually not just a grid of real values

color image has a red, green and blue intensity at each
pixel

working with images usually the input and output of the
convolution as being 3-D tensors

ML — CNN

usually work in batch mode using 4-D tensors
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Variants of the CNN

¥ 4-D kernel tensor

K Ki gkl

tensor elements

¥ lensors

 Array with more that two axes

* Kijik
B connection strength between a unit in channel i of the
output and a unit in channel | of the input, with an offset

of k rows and | columns between the output unit and the
input unit

ML — CNN
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Variants of the CNN

r Input observed data

v Vi.ik

input unit within channel i at row j and column k

¥ Convolution

Zi,j,k — E Vl,j+m—l,k—|—n—lKi,l,m,n

[,m,n

ML — CNN
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Variants of the CNN

» downsampled convolution function ¢ such that

Zi,j,k: — C(K.- Vv S)i,j,k: — E [Vl,(j—l)xs—l—m,(k—l)><s+nKi.,l,m,n]

[.m.n

¥ s is the stride of the downsampled convolution

k It is possible to define a separate stride for each
direction of motion
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Variants of the CNN

ONENONENO

) ) )
Strided
convolution
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Variants of the CNN

o

Downsampling
A \ [ h [}
Convolution
x1 T2 T3 T4 Ts
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Variants of the CNN

¥ Essential feature zero-pad V

r to make it wider

r Without zero-padding

¥ the width of the representation shrinks by one pixel less
than the kernel width at each layer

e shrinking the spatial extent of the network rapidly or
using small kernels

ML — CNN
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Variants of the CNN
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The effect of zero
padding on network
Adding five implicit zeroes
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Variants of the CNN

ML — CNN

Same convolution
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Zero-padding

» Three special cases

® valid convolution
no zero-padding

all pixels in the output are a function of the same number of
pixels in the input

the output shrinks at each layer

B same convolution

zero-padding is added to keep the size of the output equal
to the size of the input

e the optimal amount of zero padding (in terms of test
set classification accuracy) lies somewhere between
“valid” and “same” convolution

ML — CNN
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Unshared convolution

» adjacency matrix (no convolution) in the graph of
our MLP is the same

B Weights W by a 6-D tensor

Zijk = E Vi j4+m—1k+n—1Wi j k1 ,mn]

I,mn

i, the output channel, j, the output row, k, the output column, I, the input
channel, m, the row offset within the input, and n, the column offset within
the input

ML — CNN
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Tiled convolution

Channel coord

ML — CNN

Ilmn

t different choices of kernel stack in each
direction

Zi,j,k - E Vl,j+'m—1,k+7l—lKi,l,m,n,j%t+l,k%H—l
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Learning

¥ Three operations for training any depth of
feedforward convolutional network
B convolution
B backprop from output to weights

B backprop from output to inputs

¥ We consider strided CNN

Zi,j,k - C(K,V, S)i,j,k. - E [Vl,(j—l)xs+m,(k—1)xs-+-nKi,l,m,n]

l,mn
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Learning

¥ Minimize the loss function

J(V,K)

» Derivatives w.r.t. the weights in the kernel

9
(G, V., . ‘

mn

Gijk = 57— J (V. K)
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Learning

e If the layer is not the bottom layer

0
"R OV ik

= 2 2

l,m n,p
s.t. s.t.
(I-1)xs+m=j (n—1)xs+p=Fk

h(K,G,s)

J(V,K)

ML — CNN
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Structured output

pooling operator with unit stride

ML — CNN

u®
Py

recurrent convolutional network
for pixel labeling

43



Data types

Single channel

Multi-channel

Audio waveform: The axis we
convolve over corresponds to
time. We discretize time and
measure the amplitude of the
waveform once per time step.

Skeleton animation data: Anima-
tions of 3-D computer-rendered
characters are generated by alter-
ing the pose of a “skeleton” over
time. At each point in time, the
pose of the character is described
by a specification of the angles of
each of the joints in the charac-
ter’s skeleton. Each channel in
the data we feed to the convolu-
tional model represents the angle
about one axis of one joint.

Audio data that has been prepro-
cessed with a Fourier transform:
We can transform the audio wave-
form into a 2D tensor with dif-
ferent rows corresponding to dif-
ferent frequencies and different
columns corresponding to differ-
ent points in time. Using convolu-
tion in the time makes the model
equivariant to shifts in time. Us-
ing convolution across the fre-
quency axis makes the model
equivariant to frequency, so that
the same melody played in a dif-
ferent octave produces the same
representation but at a different
height in the network’s output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue
pixels. The convolution kernel
moves over both the horizontal
and vertical axes of the image,
conferring translation equivari-
ance in both directions.
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Volumetric data: A common
source of this kind of data is med-
ical imaging technology, such as
CT scans.

Color video data: One axis corre-
sponds to time, one to the height
of the video frame, and one to
the width of the video frame.

Data types



Features

¢ reduce the cost of CNN training

B use features that are not trained in a supervised
fashion

simply initialize them randomly
design them by hand

one can learn the kernels with an unsupervised criterion
(clustering)

Random filters

ML — CNN
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Neuroscientific basis

¥ Some of the key design principles of neural
networks were drawn from neuroscience

¥ mammalian vision system works
¥ David Hubel and Torsten Wiesel (Nobel Prize)

neurons in the early visual system responded most strongly
to very specific patterns of light, such as precisely oriented
bars, but responded hardly at all to other patterns

¢ Primary visual cortex
B Spatial map
B Simple cells

E Complex cells

ML — CNN
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Neuroscientific basis

¥ Grandmother cells

e cells that respond to some specific concept and are
invariant to many transformations of the input

¥ medial temporal lobe

ML — CNN
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Gabor functions

ddESSSSEE Illinnonnm OOOEEEEE
AdddESSSER IlnDNDnoDnm OOoOoNEEEE
dAdd=ESERY IlIDNDlnDDm OoOoOoDEEEE
HAAZSAILN DTidDoDnoDnon goooEEeew
HNNNZZEE DifDDinon goooEEEw
UNSSEZZE IlDDDinDDnD goooenanrw
SNSSSSEEZYZ IlllllInNDDoD Ooooonrnm
SSSSEEEPZE Indnnomo oD

Reverse correlation shows us that most V1 cells have weights that are described
by Gabor functions
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Gabor functions

Unsupervised learning First layer convolution kernels

Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are
reminiscent of the Gabor functions known to be present in primary visual cortex.
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CNN models

ML — CNN
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¥ Recent models

LeNet
AlexNet
VGGNet
GoogleNet
ResNet
ZFNet
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